14.已知不等式$\frac{x+2}{ax-1}$>0的解集為(-2,-1),則二項式(ax+$\frac{1}{{x}^{2}}$)6展開式的常數(shù)項是(  )
A.-15B.15C.-5D.5

分析 先求得二項式展開式的通項公式,再令x的冪指數(shù)等于0,求得r的值,即可求得展開式中的常數(shù)項.

解答 解:∵不等式$\frac{x+2}{ax-1}$>0的解集為(-2,-1),∴$\frac{1}{a}$=-1,解得a=-1.
則二項式(ax+$\frac{1}{{x}^{2}}$)6=(x-$\frac{1}{{x}^{2}}$)6展開式的通項公式為Tr+1=${C}_{6}^{r}$•(-1)r•x6-3r
令6-3r=0,解得r=2,故二項式(ax+$\frac{1}{{x}^{2}}$)6展開式的常數(shù)項是15,
故選:B.

點評 本題主要考查二項式定理的應(yīng)用,二項式展開式的通項公式,求展開式中某項的系數(shù),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=Asin(ωx+φ)(A>0且ω>0,0<φ<$\frac{π}{2}$)的部分圖象,如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)利用五點作圖法畫出函數(shù)y=f(x)在(0,$\frac{5π}{3}$)內(nèi)的圖象;
(3)若方程f(x)=a在(0,$\frac{5π}{3}$)上有兩個不同的實根,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.重慶巴蜀中學(xué)高三的某位學(xué)生的10次數(shù)學(xué)考試成績的莖葉圖如圖所示,則該生數(shù)學(xué)成績在(135,140)內(nèi)的概率為( 。
A.0.3B.0.4C.0.5D.0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)x1,x2是方程ax2+bx+1=0的兩實根,x3,x4是方程a2x2+bx+1=0的兩實根,若x3<x1<x2<x4,則實數(shù)a的取值范圍為0<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,AB⊥BC,若BD⊥AC,且BD交AC于點D,BD=2,則$\overrightarrow{BD}•\overrightarrow{BC}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A、B、C的對邊分別為a、b、c.已知acosB-bsinB=c.
(1)若B=30°,求A.
(2)求sinA+sinB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a>0,ab=1,4a+2b+$\frac{a}$的最小值是( 。
A.4$\sqrt{2}$B.8C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)最小值為f(a),求f(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求證:△ABC的三條高線交于一點.

查看答案和解析>>

同步練習(xí)冊答案