分析 建立直角坐標(biāo)系,寫出各點(diǎn)的坐標(biāo),利用兩點(diǎn)的連線的斜率公式求出AB的斜率,利用兩直線垂直斜率互為倒數(shù)得到AB邊上的高的斜率,利用點(diǎn)斜式求出AB邊的高的方程,同理求出AC邊上的高,兩高線的方程聯(lián)立得到高線的交點(diǎn).
解答 證明:取△ABC最長一邊BC所在的直線為X軸,經(jīng)過A的高線為Y軸,設(shè)A、B、C的坐標(biāo)分別為A(0,a)、B(b,0)、C(c,0),根據(jù)所選坐標(biāo)系,如圖,有a>0,b<0,c>0,AB的方程為$\frac{x}+\frac{y}{a}=1$,其斜率為-$\frac{a}$,AC的方程為$\frac{x}{c}+\frac{y}{a}=1$,其斜率為-$\frac{a}{c}$,
高線CE的方程為y=$\frac{a}$(x-c)(1)高線BD的方程為y=$\frac{c}{a}$(x-b)(2).
解(1)、(2),得:(b-c)x=0
∵b-c≠0∴x=0
即高線CE、BD的交點(diǎn)的橫坐標(biāo)為0,也即交點(diǎn)在高線AO上.
因此,三條高線交于一點(diǎn).
點(diǎn)評 本題考查通過建立直角坐標(biāo)系將問題轉(zhuǎn)化為代數(shù)問題、考查兩點(diǎn)連線的斜率公式、考查兩直線垂直斜率乘積為-1、考查兩直線的交點(diǎn)坐標(biāo)的求法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -15 | B. | 15 | C. | -5 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 0 | 1 | n | 3 |
y | 8 | m | 2 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{25}$ | B. | $\frac{1}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,1) | B. | (-lg3,0) | C. | ($\frac{1}{1000}$,1) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,14] | B. | (2,14) | C. | [2,$\sqrt{13}$+1] | D. | (2,$\sqrt{13}$+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com