3.設(shè)f(x)=$\left\{\begin{array}{l}{2{e}^{x-1}(x<2)}\\{\frac{1}{2}+lnx(x≥2)}\end{array}\right.$,則f(f(e))的值為( 。
A.0B.$\sqrt{e}$C.2$\sqrt{e}$D.3

分析 利用分段函數(shù)的性質(zhì)求解.

解答 解:∵f(x)=$\left\{\begin{array}{l}{2{e}^{x-1}(x<2)}\\{\frac{1}{2}+lnx(x≥2)}\end{array}\right.$,
∴f(e)=$\frac{1}{2}+lne$=$\frac{3}{2}$,
f(f(e))=f($\frac{3}{2}$)=$2{e}^{\frac{3}{2}-1}$=2$\sqrt{e}$.
故選:C.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意分段函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知如圖,在直三棱柱ABC-A1B1C1中,AA1=AC,且AB⊥AC,M是面CC1的中點,N是BC的中點,點P在直線A1B1上.
(Ⅰ)若P為A1B1中點,求證:NP∥平面ACC1A1
(Ⅱ)證明:PN⊥AM.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.數(shù)列{an}滿足a1=2,${a_{n+1}}=\frac{1}{{1-{a_n}}}(n∈{N^*})$,則a2016=( 。
A.-2B.-1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在數(shù)列{an}中,a1=1,an+1=(1+$\frac{1}{n}$)an+$\frac{n+1}{{2}^{n}}$,
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=ln|x-2|-|x-2|,則它的圖象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若指數(shù)函數(shù)f(x)的圖象過點(-2,4),則f(-3)=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若cosθ=$\frac{3}{5}$(-$\frac{π}{2}$<θ<0),則cos(θ-$\frac{π}{6}$)的值是( 。
A.$\frac{3\sqrt{3}±4}{10}$B.$\frac{4±3\sqrt{3}}{10}$C.$\frac{3\sqrt{3}-4}{10}$D.$\frac{3\sqrt{3}+4}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖所示的是水平放置的三角形的直觀圖,D為△ABC中BC的中點,則原圖形中的AB,AD,AC三條線段中( 。
A.最長的是AB,最短的是ACB.最長的是AC,最短的是AB
C.最長的是AB,最短的是ADD.最長的是AC,最短的是AD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)在平面上給定了一個四邊形ABCD,點K、L、M、N分別是邊AB、BC、CD、DA的中點,求證:$\overrightarrow{KL}$=$\overrightarrow{NM}$.

查看答案和解析>>

同步練習冊答案