6.某校舉辦數(shù)學(xué)科優(yōu)質(zhì)課比賽,共有6名教師參加.如果第一場比賽教師只能從甲、乙、丙三人中產(chǎn)生,最后一場只能從甲、乙兩人中產(chǎn)生,則不同的安排方案共有96 種.(用數(shù)字作答)

分析 分兩類,第一類若第一場比賽從甲或乙開始,最后一場從甲或乙產(chǎn)生,第二類若第一場比賽從丙開始,最后一場從甲或乙產(chǎn)生,根據(jù)分類計數(shù)原理即可得到答案.

解答 解:若第一場比賽從甲或乙開始,則最后一場從甲或乙產(chǎn)生,故A22A44=48種,
若第一場比賽從丙開始,最后一場從甲或乙產(chǎn)生,故A21A44=48種,
根據(jù)分類計數(shù)原理,不同的安排方案共有48+48=96種,
故答案為:96.

點評 本題考查了分類計數(shù)原理,關(guān)鍵是分類,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\overrightarrow{m}$.$\overrightarrow{n}$,且$\overrightarrow{m}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{n}$=(cosωx-sinωx,2sinωx),其中ω>0,若函數(shù)f(x)相鄰兩對稱軸的距離大于等于$\frac{π}{2}$.
(1)求ω的取值范圍;
(2)在銳角三角形△ABC中,a,b,c分別是角A,B,C的對邊,當(dāng)ω最大時,f(A)=1,且a=$\sqrt{3}$,求c+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果復(fù)數(shù)$\frac{2-bi}{3+i}$(b∈R)的實部與虛部互為相反數(shù),則b=(  )
A.0B.1C.-lD.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.以雙曲線$\frac{{x}^{2}}{10}$-$\frac{{y}^{2}}{15}$=1的右焦點為圓心,且與其漸近線相切的圓的方程是( 。
A.x2+y2-10x+10=0B.x2+y2-10x+15=0C.x2+y2+10x+15=0D.x2+y2+10x+10=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=ln(ex+a)(a為常數(shù))是實數(shù)R上的奇函數(shù),若關(guān)于x的方程$\frac{lnx}{f(x)}$=x2-2ex+m的根的個數(shù)為2,則實數(shù)m的范圍為(  )
A.m≥e2+$\frac{1}{e}$B.m>$\frac{1}{e}$C.m<e2+$\frac{1}{e}$D.m≤$\frac{1+e}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.點P為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{9}$=1的右支上任意一點,由P向兩條漸近線作平行線交漸近線于M、N兩點,若平行四邊形OMPN面積為3,則雙曲線的離心率為$\frac{\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$2\sqrt{2}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系xOy 中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+cos2α\\ y=\frac{1}{2}cosα\end{array}$(α為參數(shù)),在極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$
(1)求曲線C2的普通方程
(2)設(shè)c1與c2相交于A,B兩點,求|AB|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|x2-x-2≤0,x∈Z},集合B={0,2,4},則A∪B等于( 。
A.{-1,0,1,2,4}B.{-1,0,2,4}C.{0,2,4}D.{0,1,2,4}

查看答案和解析>>

同步練習(xí)冊答案