16.設(shè)命題p:若實數(shù)x滿足x2-4ax+3a2≤0,其中a>0;命題q:實數(shù)x滿足$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8≥0\end{array}\right.$
(1)若a=1且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

分析 分別化簡命題p:a<x<3a;命題q:實數(shù)x滿足$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8≥0\end{array}\right.$,解得2≤x≤3.
(1)若a=1,則p化為:1<x<3,由p∧q為真,可得p與q都為真.
(2)¬p是¬q的充分不必要條件,可得q是p的充分不必要條件,即可得出.

解答 解:命題p:若實數(shù)x滿足x2-4ax+3a2≤0,其中a>0,可得a<x<3a;命題q:實數(shù)x滿足$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8≥0\end{array}\right.$,化為$\left\{\begin{array}{l}{(x-3)(x+2)≤0}\\{(x+4)(x-2)≥0}\end{array}\right.$,解得$\left\{\begin{array}{l}{-2≤x≤3}\\{x≥2或x≤-4}\end{array}\right.$,解得2≤x≤3.
(1)若a=1,則p化為:1<x<3,∵p∧q為真,∴$\left\{\begin{array}{l}{1<x<3}\\{2≤x≤3}\end{array}\right.$,解得2≤x≤3.
∴實數(shù)x的取值范圍為[2,3].
(2)¬p是¬q的充分不必要條件,
∴q是p的充分不必要條件,
∴$\left\{\begin{array}{l}{a≤2}\\{3≤3a}\end{array}\right.$,解得1≤a≤2.
∴實數(shù)a的取值范圍是[1,2].

點評 本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一對夫婦有兩個孩子,已知其中一個孩子是女孩,那么另一個孩子也是女孩的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在三棱柱ABC-A1B1C1中,AB⊥BB1,AB=1,AA1=$\sqrt{2}$,D為AA1的中點,BD與AB1交于點O,CO⊥側(cè)面ABB1A1
(1)證明:AB1⊥平面BCD;
(2)若OC=OA,求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知平面上兩點M(-5,0)和N(5,0),若直線上存在點P使|PM|-|PN|=6,則稱該直線為“單曲型直線”,下列直線中:
①y=x+1 ②y=2 ③y=$\frac{4}{3}$x ④y=2x+1
是“單曲型直線”的是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在等比數(shù)列{an}中,a3=-12,前3項和S3=-9,求公比q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列說法正確的是( 。
A.$?x∈{R}\;,\;\root{3}{x}+1>0$
B.在線性回歸分析中,如果兩個變量的相關(guān)性越強,則相關(guān)系數(shù)r就越接近于1
C.p∨q為真命題,則命題p和q均為真命題
D.命題“$?{x_0}∈{R}\;,\;x_0^2-{x_0}>0$”的否定是“?x∈R,x2-x≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題中正確的是( 。
A.若直線a在平面α外,則直線a與平面內(nèi)任何一點都只可以確定一個平面
B.若a,b分別與兩條異面直線都相交,則a,b是異面直線
C.若直線a平行于直線b,則a平行于過b的任何一個平面
D.若a,b是異面直線,則經(jīng)過a且與b垂直的平面可能不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若cosθ<0,且$cosθ-sinθ=\sqrt{1-sin2θ}$,那么θ是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)函數(shù)y=x2+x-1在(1,1)處的切線方程是3x-y-2=0.

查看答案和解析>>

同步練習(xí)冊答案