【題目】如圖,已知是邊長為3的正方形,平面,,且,.

(1)求幾何體的體積;

(2)求二面角的余弦值.

【答案】(1);(2).

【解析】

1)由圖可得V多面體ABCDEFVBADEF+VEDBC.利用線面垂直的性質(zhì)和四棱錐、三棱錐的體積計算公式即可得出.

2)由題可證全等于,過,連接,則,得到為二面角的平面角,利用余弦定理求解即可.

1)∵DE⊥平面ABCD,

∴平面ADEF⊥平面ABCD,且交線為AD

ABAD,∴AB⊥平面ADEF,即BA為四棱錐B﹣ADEF的高.

ADEF是直角梯形,∴

V多面體ABCDEFVBADEF+VEDBC

(2)由題可知,全等于

,連接,則

如圖:

為二面角的平面角,

中,,

中,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值;

2)若,求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的右焦點為點的坐標(biāo)為,為坐標(biāo)原點,是等腰直角三角形.

(1)求橢圓的方程;

(2)經(jīng)過點作直線交橢圓兩點,求面積的最大值;

(3)是否存在直線交橢圓于兩點,使點的垂心(垂心:三角形三邊高線的交點)?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,《宋人撲棗圖軸》是作于宋朝的中國古畫,現(xiàn)收藏于中國臺北故宮博物院.該作品簡介:院角的棗樹結(jié)實累累,小孩群來攀扯,枝椏不;蝿樱A椬訐u落滿地,有的牽起衣角,有的捧著盤子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據(jù)該圖編排一個舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個動作,四人每人模仿一個動作.若他們采用抽簽的方式來決定誰模仿哪個動作,則甲不模仿“爬”且乙不模仿“扶”的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四面體ABCD的每個頂點都在球O的表面上,AB是球O的一條直徑,AC=2,BC=4,現(xiàn)有下面四個結(jié)論:

①球O的表面積為20π;AC上存在一點M,使得ADBM;

③若AD=3,BD=4;④四面體ABCD體積的最大值為.

其中所有正確結(jié)論的編號是( )

A.①②B.②④C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,,,,,則三棱錐外接球的體積的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形ABCD中,ABBC,∠BCD120°,△ABD是邊長為2的正三角形,EAB邊上的動點,則的最小值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,中心為坐標(biāo)原點O的兩圓半徑分別為,,射線OT與兩圓分別交于A、B兩點,分別過A、B作垂直于x軸、y軸的直線、,于點P

1)當(dāng)射線OT繞點O旋轉(zhuǎn)時,求P點的軌跡E的方程;

2)直線l與曲線E交于M、N兩點,兩圓上共有6個點到直線l的距離為時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達線人數(shù)減少

B. 與2015年相比,2018年二本達線人數(shù)增加了

C. 2015年與2018年藝體達線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

同步練習(xí)冊答案