7.如圖,用基向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$分別表示向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowrfrjgi6$,并求出它們的坐標(biāo).

分析 由平面向量加法的平行四邊形法則寫出$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowworoa2r$,再寫成坐標(biāo)形式即可.

解答 解:由平面向量的加法的平行四邊形法則知,
$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$=(3,2),
$\overrightarrow$=-$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$=(-1,3),
$\overrightarrow{c}$=-2$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$=(-2,-3),
$\overrightarrowknfcele$=3$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$=(3,-3).

點(diǎn)評 本題考查了向量的線性運(yùn)算的應(yīng)用及坐標(biāo)表示的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{^{2}}=1$(b>0)的右焦點(diǎn)F2為圓心,2為半徑的圓與雙曲線的漸近線相交,則雙曲線的離心率的范圍是( 。
A.(1,$\sqrt{3}$)B.($\sqrt{3}$,+∞)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}中,a1=2,an+1=2an+3.
(1)求數(shù)列{an}的通項(xiàng)an;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,已知角A、B、C所對的邊分別為a,b,c.已知A=$\frac{π}{3}$,a=$\sqrt{3}$,b=2.則B=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}各項(xiàng)為正數(shù),且a2=4a1,an+1=${a}_{n}^{2}$+2an(n∈N*
(I)證明:數(shù)列{log3(1+an)}為等比數(shù)列;
(Ⅱ)令bn=log3(1+a2n-1),數(shù)列{bn}的前n項(xiàng)和為Tn,求使Tn>345成立時n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.(x-1)(x+2)(x-5)(x+7)(x-10)中x4的系數(shù)為-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2-3x.
(1)當(dāng)x∈R時,求函數(shù)f(x)的解析式:,
(2)用定義證明:f(x)在[2,+∞)上是增函數(shù),;
(3)求函數(shù)y=f(x)-x+3所有零點(diǎn)的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)橢圓C:y2+$\frac{{x}^{2}}{{m}^{2}}$=1(0<m<1)的兩焦點(diǎn)分別為F1,F(xiàn)2,若在橢圓C上存在點(diǎn)P使得PF1⊥PF2,則m的取值范圍是( 。
A.[$\frac{\sqrt{2}}{2}$,1)B.(0,$\frac{\sqrt{2}}{2}$]C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{3+{{log}_2}x,x>0}\\{{x^2}-x-1,x≤0}\end{array}}$,則不等式f(x)≤5的解集為( 。
A.[-1,1]B.(-∞,-2]∪(0,4)C.[-2,4]D.(-∞,-2]∪[0,4]

查看答案和解析>>

同步練習(xí)冊答案