分析 設(shè)AB方程y=k(x-1),與拋物線方程y2=4x聯(lián)立,利用tan∠AMB=2$\sqrt{2}$,建立k的方程,即可得出結(jié)論..
解答 解:焦點(diǎn)F(1,0),M(-1,0),設(shè)AB方程y=k(x-1),
設(shè)A(x1,y1),B(x2,y2)
∵tan∠AMB=2$\sqrt{2}$,
∴$\frac{\frac{{y}_{1}}{{x}_{1}+1}-\frac{{y}_{2}}{{x}_{2}+1}}{1+\frac{{y}_{1}}{{x}_{1}+1}•\frac{{y}_{2}}{{x}_{2}+1}}$=2$\sqrt{2}$,
整理可得2k(x1-x2)=2$\sqrt{2}$(x1+1)(x2+1)+2$\sqrt{2}$y1y2…(*)
y=k(x-1),與y2=4x聯(lián)立可得k2x2-(2k2+4)x+k2=0
可得x1x2=$\frac{1}{4}$p2=1,x1+x2=$\frac{4}{{k}^{2}}$+2,y1y2=-p2=-4
代入(*)可得2k(x1-x2)=2$\sqrt{2}$($\frac{4}{{k}^{2}}$),∴x1-x2=$\frac{4\sqrt{2}}{{k}^{3}}$,
∴($\frac{4}{{k}^{2}}$+2)2-4=($\frac{4\sqrt{2}}{{k}^{3}}$)2,
∴k=±1,
∴x1+x2=$\frac{4}{{k}^{2}}$+2=6,
∴|AB|=$\sqrt{1+1}•\sqrt{36-4}$=8
故答案為:8.
點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系,考查差角的正切公式,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{p}{2}$,0) | B. | (p,0) | C. | (2p,0) | D. | (3p,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=sin(2x-$\frac{π}{3}$) | B. | y=sin(2x-$\frac{π}{6}$) | C. | y=sin(2x+$\frac{π}{6}$) | D. | y=sin($\frac{1}{2}$x+$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-2m | B. | 2m-1 | C. | 1-($\frac{1}{2}$)m | D. | ($\frac{1}{2}$)m-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com