11.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{ta{n}^{2}α}{4}}\\{y=tanα}\end{array}\right.$(α是參數(shù)),直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=1+\frac{t}{2}}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$ (t是參數(shù)).
(1)求曲線C和直線l的普通方程,并指出曲線C的曲線類型;
(2)若直線l和曲線C相交于A、B兩點,求|AB|.

分析 (1)根據(jù)參數(shù)方程的特點消參數(shù)得出普通方程;
(2)將直線的參數(shù)方程代入曲線的普通方程,利用參數(shù)的幾何意義解出|AB|.

解答 解:(1)曲線C1的普通方程為y2=4x,表示頂點在原點,開口向右的拋物線.
直線l的普通方程為$\sqrt{3}x-y-1=0$.
(2)將直線l的參數(shù)方程代入y2=4x得$\frac{3}{4}{t}^{2}$-2t-4=0.
∴t1=4,t2=-$\frac{4}{3}$.
∴|AB|=|t1-t2|=$\frac{16}{3}$.

點評 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,參數(shù)的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=alnx+$\frac{1}{x}$,a為正常數(shù).
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對任意x1,x2∈(0,$\frac{1}{2}$],x1≠x2,都有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{bn}是首項為b1=1,公差d=3的等差數(shù)列,bn=l-3log2 (2an)(n∈N*).
(1)求證:{an}是等比數(shù)列;
(2)若數(shù)列{cn}滿足cn=an•bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=sin24x是( 。
A.最小正周期為$\frac{π}{4}$的奇函數(shù)B.最小正周期為π的奇函數(shù)
C.最小正周期為$\frac{π}{4}$的偶函數(shù)D.最小正周期為π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.不等式x2-4|x|-5<0的解集是{x|-$\sqrt{5}$<x<$\sqrt{5}$}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a≥0,當(dāng)x為何值時,函數(shù)f(x)=(x2-2ax)•ex取得最小值?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}\frac{a}{x-1},\;x≤0\\{log_2}x,\;x>0.\end{array}\right.$
①若a=1,且關(guān)于x的方程f(x)=k有兩個不同的實根,則實數(shù)k的取值范圍是[-1,0);
②若關(guān)于x的方程f(f(x))=0有且只有一個實根,則實數(shù)a的取值范圍是(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0.
(1)若y=f(x)在$[-\frac{3π}{4},\frac{π}{3}]$上單調(diào)遞增,求ω的取值范圍;
(2)令ω=2,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個單位長度,再向上平移1個單位長度,得到函數(shù)y=g(x)的圖象,區(qū)間[a,b](a<b,a,b∈R)滿足:y=g(x)在[a,b]上至少含有20個零點,在所有滿足上述條件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.袋中裝有5只大小相同的球,編號分別為1,2,3,4,5,若從該袋中隨機地取出3只,則被取出的球的編號之和為奇數(shù)的概率是$\frac{2}{5}$(結(jié)果用最簡分?jǐn)?shù)表示).

查看答案和解析>>

同步練習(xí)冊答案