15.關(guān)于函數(shù)$f(x)=\frac{lnx}{x^2}$極值的判斷,正確的是( 。
A.x=1時(shí),y極大值=0B.x=e時(shí),y極大值=$\frac{1}{e^2}$
C.x=e時(shí),y極小值=$\frac{1}{e^2}$D.$x=\sqrt{e}$時(shí),y極大值=$\frac{1}{2e}$

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.

解答 解:f(x)使得定義域是(0,+∞),
f′(x)=$\frac{x-2xlnx}{{x}^{4}}$=$\frac{1-2lnx}{{x}^{3}}$,
令f′(x)>0,解得:0<x<$\sqrt{e}$,
令f′(x)<0,解得:x>$\sqrt{e}$,
故f(x)在(0,$\sqrt{e}$)遞增,在($\sqrt{e}$,+∞)遞減,
故x=$\sqrt{e}$時(shí),f(x)的極大值是f($\sqrt{e}$)=$\frac{1}{2e}$,
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f(x)+f′(x)=x,f(1)=1,則f(x)的零點(diǎn)個(gè)數(shù)為(  )
A.0B.1C.2D.至少3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖所示在6×6的方格中,有A,B兩個(gè)格子,則從該方格表中隨機(jī)抽取一個(gè)矩形,該矩形包含格子A但不包含格子B的概率為$\frac{4}{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.現(xiàn)有2名男生和3名女生.
(Ⅰ)若其中2名男生必須相鄰排在一起,則這5人站成一排,共有多少種不同的排法?
(Ⅱ)若男生甲既不能站排頭,也不能站排尾,這5人站成一排,共有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某程序框圖如圖所示,若輸出的S=26,則判斷框內(nèi)應(yīng)填入:k>3;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.極坐標(biāo)方程ρ(cosθ+sinθ)-1=0化為直角坐標(biāo)方程是x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知命題p:函數(shù)f(x)=x2-2ax+3在區(qū)間[-1,2]上單調(diào)遞增;
命題q:函數(shù)g(x)=lg(x2+ax+4)的定義域?yàn)镽;
若命題“p∧q”為假,“p∨q”為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知a∈R,函數(shù)f(x)滿足f(2x)=x2-2ax+a2-1.
(Ⅰ)求f(x)的解析式,并寫(xiě)出f(x)的定義域;
(Ⅱ)若f(x)在$[{2^{a-1}},{2^{{a^2}-2a+2}}]$上的值域?yàn)閇-1,0],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若${(1+3x)^{2017}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2017}}{x^{2017}}$,則$\frac{a_1}{3}-\frac{a_2}{3^2}+\frac{a_3}{3^3}+…+{(-1)^{n-1}}\frac{a_n}{3^n}+…+\frac{{{a_{2017}}}}{{{3^{2017}}}}$的值為( 。
A.-2B.-1C.0D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案