6.已知焦點在x軸上的橢圓經(jīng)過點(0,$\sqrt{6}$),焦距為4.
(1)求橢圓的標準方程;
(2)求橢圓的離心率.

分析 (1)由題意可設橢圓的標準方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0).可得b=$\sqrt{6}$,2c=4,a2=b2+c2,即可得出.
(2)e=$\frac{c}{a}$.

解答 解:(1)由題意可設橢圓的標準方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0).
∴b=$\sqrt{6}$,2c=4,解得c=2,∴a2=b2+c2=10.
∴橢圓的標準方程為$\frac{{x}^{2}}{10}+\frac{{y}^{2}}{6}$=1.
(2)e=$\frac{c}{a}$=$\frac{2}{\sqrt{10}}$=$\frac{\sqrt{10}}{5}$.

點評 本題考查了橢圓的標準方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)f(x)=$\frac{2x-4}{4x+3}$,則f(0)=$-\frac{4}{3}$,f(a+2)=$\frac{2a}{4a+11}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.使內(nèi)接橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的矩形面積最大,矩形的長為$\sqrt{2}$a,寬為$\sqrt{2}$b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的一條漸近線與圓x2+(y-$\sqrt{2}$)2=1至少有一個交點,則雙曲線離心率的取值范圍是( 。
A.(1,2)B.(1,$\sqrt{2}$]C.[$\sqrt{2}$,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設P是橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{10}$=1上的點.若F1、F2是橢圓的兩個焦點,則|PF1|+|PF2|等于( 。
A.4B.$\sqrt{10}$C.8D.2$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)$f(x)=1+2sin(x+π)cos(x-\frac{π}{2})$,則f(x)是( 。
A.周期為π的奇函數(shù)B.周期為π的偶函數(shù)
C.周期為2π的奇函數(shù)D.周期為2π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若函數(shù)$f(x)={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2014}}{x^{2014}}(x∈R)$是奇函數(shù),則a0+a2+a4+…+a2014=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知$a>b>0,a+b=1,x=-{(\frac{1}{a})^b},y=1o{g_{ab}}(\frac{1}{a}+\frac{1}),z=1o{g_b}\frac{1}{a}$,則( 。
A.x<z<y??B.x<y<z??C.z<y<x??D.x=y<z??

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合$A=\left\{{x{{\left|{({\frac{1}{2}})}\right.}^x}>1}\right\}$,集合B={x|lgx<0}則A∩B(  )
A.{x|x<0}B.{x|0<x<1}C.{x|x>1}D.φ

查看答案和解析>>

同步練習冊答案