分析 運(yùn)用橢圓的參數(shù)方程設(shè)內(nèi)接橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的矩形ABCD的頂點(diǎn)坐標(biāo),再由矩形的面積公式和二倍角的正弦公式,以及正弦函數(shù)的最值,即可得到所求最大值及對(duì)應(yīng)的長(zhǎng)與寬.
解答 解:設(shè)內(nèi)接橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的矩形ABCD的頂點(diǎn)坐標(biāo)為A(acosα,bsinα),(0<α<$\frac{π}{2}$)
B(acosα,-bsinα),C(-acosα,-bsinα),D(-acosα,bsinα),
則內(nèi)接矩形的面積為S=2acosα•2bsinα=2absin2α,
當(dāng)sin2α=1,即α=$\frac{π}{4}$時(shí),矩形的面積最大,且為2ab.
即有矩形的長(zhǎng)為$\sqrt{2}$a,寬為$\sqrt{2}$b.
故答案為:$\sqrt{2}$a,$\sqrt{2}$b.
點(diǎn)評(píng) 本題考查橢圓的參數(shù)方程的運(yùn)用,考查正弦函數(shù)的值域的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,2) | B. | [$\frac{4}{3}$,2] | C. | ($\frac{4}{3}$,2) | D. | [$\frac{4}{3}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-2<x<1} | B. | {x|0<x<1} | C. | {x|1<x<2} | D. | {x|0<x≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com