12.設(shè)M是圓(x-5)2+(y-3)2=4上的點,則M到直線4x+3y-4=0的最長距離是7.

分析 利用圓的方程求出圓的圓心及半徑;利用點到直線的距離公式求出圓心到直線4x+3y-4=0的距離,將此距離加上半徑即得M到直線4x+3y-4=0的最長距離.

解答 解:圓(x-5)2+(y-3)2=4的圓心為(5,3),半徑為2,
(5,3)到直線4x+3y-4=0的距離為$\frac{|20+9-4|}{\sqrt{16+9}}$=5,
∴M到直線4x+3y-4=0的最長距離是2+5=7,
故答案為:7.

點評 解決圓的有關(guān)問題,常利用圓滿足的一些幾何條件來解決;特別的解決直線與圓的位置關(guān)系問題轉(zhuǎn)化為圓心到直線的距離與半徑的關(guān)系問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某產(chǎn)品月產(chǎn)量和月銷量情況:每月固定成本2.8萬元,每生產(chǎn)100臺的生產(chǎn)成本為6千元(總成本為固定成本與生產(chǎn)成本之和),銷售收人S(萬元)與產(chǎn)量x(百臺)的函數(shù)關(guān)系為:S=-0.4x2+3.8x,假設(shè)該產(chǎn)品能全部銷售,要贏利,每月產(chǎn)量應(yīng)控制在什么范圍?每月生產(chǎn)多少臺產(chǎn)品時利潤最多?這時每臺售價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|sin(\frac{π}{2}x+\frac{π}{4})|,x<0}\\{lo{g}_{a}x+1(a>0且a≠1),x>0}\end{array}\right.$的圖象上關(guān)于y軸對稱點恰好有3對,則實數(shù)a的取值范圍是($\frac{2}{9}$,$\frac{2}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知點M(1,2),N(4,3),動點P滿足$\overrightarrow{OP}$=λ$\overrightarrow{OM}$+μ$\overrightarrow{ON}$,其中O為坐標原點,且λμ≥0,|λ+μ|≤1,則點P所在平面區(qū)域的面積為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知{an}是等差數(shù)列,其前n項和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=27.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記Tn=anb1+an-1b2+…+a1bn,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知(ω+x)6=a0+a1x+a2x2+…+a6x6,其中ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$$\overrightarrow{i}$,則|a0|+|a1|+…+|a6|等于(  )
A.1B.26C.$\frac{{2}^{6}+1}{2}$D.$\frac{{2}^{6}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)空間向量$\overrightarrow{a}$=(3,5,-4),$\overrightarrow$=(2,1,8).
(1)計算2$\overrightarrow{a}$+3$\overrightarrow$,3$\overrightarrow{a}$-2$\overrightarrow$,$\overrightarrow{a}$$•\overrightarrow$的值,并求$\overrightarrow{a}$與$\overrightarrow$所成角的余弦值;
(2)當λ、μ,滿足什么條件時,使得$λ\overrightarrow{a}$+$μ\overrightarrow$與z軸垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù),在其定義域內(nèi),既是奇函數(shù)又是增函數(shù)的是( 。
A.y=x${\;}^{\frac{1}{2}}$B.y=2xC.y=x3D.y=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知sinx=$\frac{\sqrt{5}-1}{2}$,sin2($\frac{x}{2}$-$\frac{π}{4}$)的值等于$\frac{3-\sqrt{5}}{4}$.

查看答案和解析>>

同步練習(xí)冊答案