分析 由n•2n-1=a1${C}_{n}^{1}$+a2${C}_{n}^{2}$+…+an${C}_{n}^{n}$(n∈N*),可得:a1=1,a2=2,a3=3.猜想:an=n(n∈N*).根據(jù)$r{∁}_{k+1}^{r}$=$(k+1){∁}_{k}^{r-1}$,利用數(shù)學(xué)歸納法證明即可.
解答 解:由n•2n-1=a1${C}_{n}^{1}$+a2${C}_{n}^{2}$+…+an${C}_{n}^{n}$(n∈N*),可得:
當(dāng)n=1時(shí),a1=1;當(dāng)n=2時(shí),2×2=${∁}_{2}^{1}$+a2,解得a2=2;同理可得a3=3.
猜想:an=n(n∈N*).
下面利用數(shù)學(xué)歸納法證明:
(1)當(dāng)n=1時(shí),顯然成立;
(2)假設(shè)當(dāng)n=k(k∈N*)時(shí),ak=k;
則當(dāng)n=k+1時(shí),(k+1)•2k=${∁}_{k+1}^{1}$+2${∁}_{k+1}^{2}$+…+$k{∁}_{k+1}^{k}$+ak+1,
根據(jù)$r{∁}_{k+1}^{r}$=$(k+1){∁}_{k}^{r-1}$,
∴(k+1)•2k=$(k+1){∁}_{k}^{0}$+$(k+1){∁}_{k}^{1}$+…+$(k+1){∁}_{k}^{k-1}$+ak+1=(k+1)(2k-1)+ak+1,
∴ak+1=k+1.
∴當(dāng)n=k+1時(shí),命題成立.
綜上可得:an=n(n∈N*)成立.
點(diǎn)評 本題考查了排列組合的性質(zhì)、數(shù)學(xué)歸納法,考查了猜想歸納能力、推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a+b∈A | B. | a+b∈B | C. | a+b∈C | D. | a+b∈(A∩B∩C) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com