16.已知{an}是首項(xiàng)為2且公差不為0的等差數(shù)列,若a1,a3,a6成等比數(shù)列,則{an}的前9項(xiàng)和等于( 。
A.26B.30C.36D.40

分析 設(shè)公差為d,由已知得(2+2d)2=2(2+5d),且d≠0,解得d=$\frac{1}{2}$,由此能求出{an}的前9項(xiàng)和.

解答 解:設(shè)公差為d,
∵{an}是首項(xiàng)為2且公差不為0的等差數(shù)列,a1,a3,a6成等比數(shù)列,
∴(2+2d)2=2(2+5d),且d≠0,
解得d=$\frac{1}{2}$,
∴{an}的前9項(xiàng)和S9=$9×2+\frac{9×8}{2}×\frac{1}{2}$=36.
故選:C.

點(diǎn)評 本題考查等差數(shù)列的前9項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線y=$\frac{3}{4}$x+b分圓x2+y2=4成的圓弧長之比為1:2,則實(shí)數(shù)b=±$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在△ABC中,∠BAC=120°,AB=2,AC=1,D是BC邊上的一點(diǎn)(包括端點(diǎn)),若$\overrightarrow{AD}$•$\overrightarrow{BC}$∈[m,n],則$\frac{n}{m-n}$的值為$-\frac{2}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為貫徹落實(shí)教育部6部門《關(guān)于加快發(fā)展青少年校園足球的實(shí)施意見》,全面提高我市中學(xué)生的體質(zhì)健康水平,培養(yǎng)拼搏意識和團(tuán)隊(duì)精神,普及足球知識和技能,市教體局決定舉行春季校園足球聯(lián)賽.為迎接此次聯(lián)賽,甲中學(xué)選拔了20名學(xué)生組成集訓(xùn)隊(duì),現(xiàn)統(tǒng)計(jì)了這20名學(xué)生的身高,記錄入如表:(設(shè)ξ為隨機(jī)變量)
身高(cm)168174175176178182185188
人數(shù)12435131
(1)請計(jì)算這20名學(xué)生的身高的中位數(shù)、眾數(shù),并補(bǔ)充完成下面的莖葉圖;
(2)身高為185cm和188cm的四名學(xué)生分別記為A,B,C,D,現(xiàn)從這四名學(xué)生選2名擔(dān)任正副門將,請利用列舉法列出所有可能情況,并求學(xué)生A入選門將的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.y=x3B.y=lnxC.y=sinxD.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤m}\end{array}\right.$,如果目標(biāo)函數(shù)z=y-x的最大值為1,則實(shí)數(shù)m等于( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.過拋物線C:y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),且A,B兩點(diǎn)的縱坐標(biāo)之積為-4.
(1)求拋物線C的方程;
(2)已知點(diǎn)D的坐標(biāo)為(4,0),若過D和B兩點(diǎn)的直線交拋物線C的準(zhǔn)線于P點(diǎn),求證:直線AP與x軸交于一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=$\frac{(a•{4}^{x}+2)cosx}{{2}^{x}}$為奇函數(shù),則a的值為( 。
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在正項(xiàng)等比數(shù)列{an}中,a1008•a1009=$\frac{1}{100}$,則lga1+lga2+…+lga2016=( 。
A.2015B.2016C.-2015D.-2016

查看答案和解析>>

同步練習(xí)冊答案