2.把分別標(biāo)有“我”“愛”“你”的三張卡片隨意的排成一排,則能使卡片從左到右可以念成“我愛你”和“你愛我”的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

分析 ,驗發(fā)生包含的事件是三張卡片全排列,滿足條件的事件能使卡片從左到右可以念成“我愛你”和“你愛我”,寫出事件數(shù),根據(jù)古典概型概率公式得到概率.

解答 解:由題意知本題是一個古典概型,
試驗發(fā)生包含的事件是三張卡片全排列,共有A33=6種結(jié)果,
滿足條件的事件是卡片排成的順序從從左到右可以念成“我愛你”和“你愛我”,共有2種結(jié)果,
根據(jù)古典概型概率公式得到P=$\frac{2}{6}$=$\frac{1}{3}$,
故選:A.

點評 本題考查古典概型,這種問題在高考時可以作為一道解答題,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題可以列舉出所有事件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知tanα=-2,則$\frac{{2{{sin}^2}α+1}}{{{{sin}^2}α-{{cos}^2}α}}$的值等于$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$
(1)求函數(shù)y=f(-2x)+1的最小正周期和單調(diào)遞減區(qū)間;
(2)已知△ABC中的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若銳角A滿足f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且a=8,sinB+sinC=$\frac{{13\sqrt{3}}}{16}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=x3-ax在(-∞,-1]上遞增,則a的取值范圍是( 。
A.a>3B.a≥3C.a<3D.a≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知定點A(a,0),動點P對極點O和點A的張角∠OPA=$\frac{π}{3}$,在OP的延長線上取一點Q,使|PQ|=|PA|,當(dāng)P在極軸上方運動時,求點Q的軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知某海濱浴場海浪的高度y(米)是時間t (0≤t≤24,單位:小時)函數(shù),記作:y=f(t),下表是某日各時的浪高數(shù)據(jù):
t(時)03691215182124
y(米)1.410.880.390.911.380.900.420.891.40
經(jīng)長期觀察,y=f(t)的曲線,可以近似地看成函數(shù)y=Acos(ωt)+b的圖象.
(1)根據(jù)以上數(shù)據(jù)(對浪高采用精確到0.1的數(shù)據(jù)),求出函數(shù)y=Acos(ωt)+b的最小正周期T,振幅A及函數(shù)表達式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8:00時至晚上20:00時之間,有多少時間可供沖浪者進行運動?
(參考數(shù)據(jù)cos$\frac{7π}{16}$≈0.2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\frac{sinα+3cosα}{3cosα-sinα}=5$,則$tan({α+\frac{π}{4}})$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}滿足遞推關(guān)系an=2an-1+3(n∈N*),且a1=-2,則a4=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.小畢喜歡把數(shù)描繪成沙灘上的小石子,他照如圖所示擺成了正三角形圖案,并把每個圖案中總的石子個數(shù)叫做“三角形數(shù)”,記為Tn,則$\frac{1}{2{T}_{1}}$+$\frac{1}{2{T}_{2}}$+$\frac{1}{2{T}_{3}}$+…+$\frac{1}{2{T}_{2015}}$=$\frac{2015}{2016}$.

查看答案和解析>>

同步練習(xí)冊答案