分析 由題意和三角函數(shù)公式可得C=120°,再由余弦定理和基本不等式可得ab的范圍,再由三角形的面積公式可得.
解答 解:∵2sin2$\frac{A+B}{2}$=1+cos2C,∴1-cos(A+B)=1+cos2C,
∴1+cosC=1+cos2C,∴cosC=2cos2C-1,
解得cosC=$-\frac{1}{2}$或cosC=1,
∵C為三角形內(nèi)角,∴cosC=$-\frac{1}{2}$,∴C=120°,
∴由余弦定理可得3=a2+b2-2abcosC=a2+b2+ab,
由基本不等式可得3=a2+b2+ab≥2ab+ab=3ab,
∴ab≤1,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào),
∴△ABC面積S=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\frac{\sqrt{3}}{4}$,
故答案為:(0,$\frac{\sqrt{3}}{4}$].
點(diǎn)評(píng) 本題考查三角函數(shù)恒等變換,涉及解三角形和基本不等式,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com