3.圓心坐標為(2,-1)的圓在直線x-y-1=0上截得的弦長為2$\sqrt{2}$,則此圓的方程為(x-2)2+(y+1)2=4.

分析 先求出弦心距,再根據(jù)弦長求出半徑,從而求得圓C的方程.

解答 解:由題意可得弦心距d=$\frac{|2+1-1|}{\sqrt{2}}$=$\sqrt{2}$,故半徑r=$\sqrt{2+2}$=2,
所以圓C的方程為(x-2)2+(y+1)2=4,
故答案為:(x-2)2+(y+1)2=4.

點評 本題主要考查直線和圓的位置關(guān)系,點到直線的距離公式,弦長公式的應(yīng)用,求圓的標準方程,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.△ABC中,角A,B,C所對的邊分別為a,b,c.2sin2$\frac{A+B}{2}$=1+cos2C,且c=$\sqrt{3}$,則△ABC面積S的取值范圍為(0,$\frac{\sqrt{3}}{4}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)f(x)=lg(2x-1),x∈[1,log211)的值域為[0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知點A(1,0,0),B(0,1,0),C(0,0,1),點D滿足條件:DB⊥AC,DC⊥AB,AD=BC,則點D的坐標為( 。
A.(1,1,1)B.(-1,-1,-1)或($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$)
C.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$)D.(1,1,1)或(-$\frac{1}{3}$,-$\frac{1}{3}$,-$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx+$\frac{1}{2}$-sin2x.
(1)求函數(shù)f(x)的最小正周期和對稱中心;
(2)當x∈[0,$\frac{π}{2}$]時,若直線y=ax+b是函數(shù)f(x)的切線,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)對于任意x,y∈R,總有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,f(1)=-$\frac{1}{4}$
(Ⅰ)求證:f(x)在R上是減函數(shù).
(Ⅱ)求f(x)在[-4,4]上的最大值和最小值.
(Ⅲ)當m+n≠0時,求證$\frac{f(m)+f(n)}{m+n}<f(0)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若an+1=$\frac{{a}_{n}}{{2}^{n}{a}_{n}+1}$,a1=1,an=$\frac{1}{{2}^{n}-1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.判斷下列函數(shù)是否具有奇偶性:
(1)f(x)=x+x3+x5
(2)f(x)=x2,x∈(-1,3);
(3)f(x)=-x2;
(4)f(x)=5x+2;
(5)f(x)=(x+1)(x-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若(2x-1)8的展開式二項系數(shù)最大項是mxn,則m+n=74.

查看答案和解析>>

同步練習冊答案