10.已知a>0,b>0,2a+3b=6,則$\frac{3}{a}$+$\frac{2}$的最小值為4.

分析 利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵a>0,b>0,2a+3b=6,
則$\frac{3}{a}$+$\frac{2}$=$\frac{1}{6}(2a+3b)$$(\frac{3}{a}+\frac{2})$=$\frac{1}{6}(12+\frac{9b}{a}+\frac{4a})$≥$\frac{1}{6}(12+2\sqrt{\frac{9b}{a}•\frac{4a}})$=4,當(dāng)且僅當(dāng)3b=2a=3時(shí)取等號(hào).
∴$\frac{3}{a}$+$\frac{2}$的最小值為4.
故答案為:4.

點(diǎn)評(píng) 本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平行六面體ABCD-A1B1C1D1中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,試用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示向量$\overrightarrow{A{C}_{1}}$,$\overrightarrow{B{D}_{1}}$,$\overrightarrow{D{B}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若A={x|-3≤x<1},B={x|x-a≥0},且A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若a2+a7-a5=6,則S7=42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知△ABC的三邊a,b,c所對(duì)的角分別為A,B,C且sinA:sinB:sinC=2:3:4.若△ABC的面積為12$\sqrt{15}$,則△ABC的外接圓的半徑R=$\frac{32\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,在△ABC中,AB=$\sqrt{2}$,AC=1,以BC為邊作等腰直角三角形BCD(B為直角頂點(diǎn),A,D兩點(diǎn)在直線BC的兩側(cè)),當(dāng)∠A∈[$\frac{π}{6}$,$\frac{2π}{3}$]時(shí),$\overrightarrow{AC}$•$\overrightarrow{AD}$的取值范圍是[$\frac{\sqrt{6}-\sqrt{2}}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知A(1,1,2),B(-1,2,1),O為坐標(biāo)原點(diǎn),則向量$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角是(  )
A.0B.$\frac{π}{3}$C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知關(guān)于x的不等式ax2+bx+c>0解集為(1,3),則cx2+bx+a<0的解集為(-∞,$\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}-4\begin{array}{l},{0≤x≤2}\end{array}}\\{2x\begin{array}{l},{x>2}\end{array}}\end{array}}\right.{,_{\;}}$則f(2)=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案