3.在△ABC中,a=1,b=$\sqrt{3},A={30°}$,則sinB=$\frac{{\sqrt{3}}}{2}$.

分析 由已知利用正弦定理即可解得sinB的值.

解答 解:∵在△ABC中,a=1,b=$\sqrt{3},A={30°}$,
∴由$\frac{a}{sinA}=\frac{sinB}$,可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{{\sqrt{3}}}{2}$.
故答案為:$\frac{{\sqrt{3}}}{2}$.

點(diǎn)評(píng) 本題主要考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆廣西南寧二中等校高三8月聯(lián)考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

下邊程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的分別為8,12,則輸出的( )

A. 2 B.4 C.0 D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.($\frac{1+i}{{\sqrt{2}}}$)2016=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=sin(x+ϕ)為偶函數(shù),則ϕ的取值可以為( 。
A.$-\frac{π}{2}$B.πC.$\frac{π}{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,設(shè)向量$\overrightarrow m$=(2cosC,$\frac{c}{2}$-b),$\overrightarrow{n}$=($\frac{a}{2}$,1),且$\overrightarrow m⊥\overrightarrow n$.
(Ⅰ)求角A的值;
(Ⅱ)若a=2,求△ABC的周長(zhǎng)l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow m$=(1,2),$\overrightarrow n$=(a,-1),若$\overrightarrow m⊥\overrightarrow n$,則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.圓(x-a)2+(y-b)2=r2的圓心在x軸上,且與y軸相切,則下面關(guān)系中一定成立的是( 。
A.a=0且b=0B.b=0且r=|a|C.b=0且r=aD.b=0且r=-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.空間四邊形(四條邊不在同一平面的四邊形)中異面直線的對(duì)數(shù)是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=2x+log3x的導(dǎo)數(shù)是$y'={2^x}ln2+\frac{1}{xln3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案