16.復(fù)數(shù)z=i在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)z的坐標(biāo)是(0,1).

分析 將復(fù)數(shù)寫成標(biāo)準(zhǔn)形式,根據(jù)復(fù)數(shù)的幾何意義解答.

解答 解:復(fù)數(shù)z=i=0+i,所以在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)z的坐標(biāo)是(0,1);
故答案為:(0,1).

點(diǎn)評(píng) 本題考查了分式的幾何意義;分式a+bi在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)z的坐標(biāo)是(a,b).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,sinA:sinB:sinC=2:3:4,則最小角的余弦值為( 。
A.$\frac{7}{8}$B.1C.$\frac{7}{9}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.六人按下列要求站一橫排,分別有多少種不同的站法?
(1)甲不站兩端;
(2)甲、乙必須相鄰;
(3)甲、乙不相鄰;
(4)甲、乙按自左至右順序排隊(duì)(可以不相鄰);
(5)甲、乙站在兩端;
(6)甲乙中間必須間隔兩個(gè)同學(xué).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)為F1,F(xiàn)2,上頂點(diǎn)為M,且△MF1F2為面積是1的等腰直角三角形.
(1)求橢圓E的方程;
(2)若直線l:y=-x+m與橢圓E交于A,B兩點(diǎn),以AB為直徑的圓與y軸相切,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知三棱錐P-ABC的側(cè)棱的長均為4,記三棱錐P-ABC三個(gè)側(cè)面的面積分別為S1,S2,S3,則當(dāng)S1+S2+S3取到最大值時(shí),三棱錐P-ABC外接球的表面積為48π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,AB=3,AC=2,BC=4,則$\overrightarrow{CA}$•$\overrightarrow{AB}$=( 。
A.$\frac{3}{2}$B.$\frac{2}{3}$C.-$\frac{2}{3}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={-1,0,1,2,3},B={x|-1<x≤2},則A∩B=( 。
A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,焦距等于短軸長,設(shè)不過原點(diǎn)的直線l與橢圓C交于M、N兩點(diǎn),滿足直線OM、MN、ON的斜率依次成等比數(shù)列.
(1)求橢圓C的離心率;
(2)若橢圓C過點(diǎn)(2,0),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知sin($\frac{3π}{2}$-x)=$\frac{5}{13}$,則cos2x=(  )
A.-$\frac{119}{169}$B.$\frac{119}{169}$C.-$\frac{5}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

同步練習(xí)冊(cè)答案