分析 (1)根據(jù)題意,首先分析甲的情況,易得甲有4種情況,再將剩余的5個人進行全排列,安排在其余5個位置,由分步計數(shù)原理計算可得答案;
(2)根據(jù)題意,先把甲、乙作為一個“整體”,看作一個人,再把甲、乙進行全排列,由分步計數(shù)原理計算可得答案;
(3)根據(jù)題意,因為甲、乙不相鄰,中間有隔檔,可用“插空法”,第一步先讓甲、乙以外的4個人站隊;第二步再將甲、乙排在4人形成的5個空檔(含兩端)中,由分步計數(shù)原理計算可得答案;
(4)根據(jù)題意,先將甲、乙以外的4人從6個位置中挑選4個位置進行排列共有A64種,剩下的兩個位置,左邊的就是甲,右邊的就是乙,問題得以解決.
(5)根據(jù)題意,首先考慮特殊元素,甲、乙先站兩端,再讓其他4人在中間位置作全排列,根據(jù)分步計數(shù)原理,由分步計數(shù)原理計算可得答案,
(6)根據(jù)題意,先排甲乙有A22種方法,再從其余的4人中選出2人放到甲乙中間,方法有A42種.把排好的這4個人看做一個整體,再與其他的2個人進行排列,方法有A33種.根據(jù)分步計數(shù)原理可得答案,
解答 解:(1)方法一:要使甲不站在兩端,可先讓甲在中間4個位置上任選1個,有A41種站法,然后其余5人在另外5個位置上作全排列有A55種站法,根據(jù)分步計數(shù)原理,共有站A41A55=480(種).
方法二:由于甲不站兩端,這兩個位置只能從其余5個人中選 2個人站,有A52種站法,然后中間4人有A44種站法,根據(jù)分步計數(shù)原理,共有站法A52A44=480(種).
方法三:若對甲沒有限制條件共有A66種法,甲在兩端共有2A55種站法,從總數(shù)中減去這兩種情況的排列數(shù),即得所求的站法數(shù),共有A66-2A55=480(種).
(2)先把甲、乙作為一個“整體”,看作一個人,有A55種站法,再把甲、乙進行全排列,有A22種站法,根椐分步計數(shù)原理,共有A55A22=240(種)站法.
(3)因為甲、乙不相鄰,中間有隔檔,可用“插空法”,第一步先讓甲、乙以外的4個人站隊,有A44種;第二步再將甲、乙排在4人形成的5個空檔(含兩端)中,有A52種,故共有站法為A44A52=480(種).
(4)先將甲、乙以外的4人從6個位置中挑選4個位置進行排列共有A64種,剩下的兩個位置,左邊的就是甲,右邊的就是乙,全部排完,故共有A64=360種.
(5)方法一:首先考慮特殊元素,甲、乙先站兩端,有A22種,再讓其他4人在中間位置作全排列,有A44種,根據(jù)分步計數(shù)原理,共有A22A44=48(種).
方法二:首先考慮兩端兩個特殊位置,甲、乙去站有A22種站法,然后考慮中間4個位置,由剩下的4人去站,有A44種站法,由分步計數(shù)原理共有A22A44=48種站法,
(6)先把甲乙排好,有A22種方法,再從其余的4人中選出2人放到甲乙中間,方法有A42種.
把排好的這4個人看做一個整體,再與其他的2個人進行排列,方法有A33種.
根據(jù)分步計數(shù)原理,求得甲、乙之間間隔兩人的排法共有 A22A42A33=144(種)
點評 本題主要考查排列組合的實際應(yīng)用,本題解題的關(guān)鍵是對于有限制的元素要優(yōu)先排,特殊位置要優(yōu)先排.相鄰的問題用捆綁法,不相鄰的問題用插空法,體現(xiàn)了分類討論的數(shù)學(xué)思想,是一個中檔題目
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com