分析 (1)直接利用余弦定理,求出B的余弦函數(shù)值,即可求解B的大;
(2)$\overrightarrow{m}$•$\overrightarrow{n}$=-3sinA-cos2A,化簡,利用配方法,即可求$\overrightarrow{m}$•$\overrightarrow{n}$的最小值.
解答 解:(1)由余弦定理:b2=a2+c2-2accosB,以及a2+c2=b2+ac,
可得cosB=$\frac{1}{2}$.
B是三角形內(nèi)角,所以B=$\frac{π}{3}$.
(2)$\overrightarrow{m}$•$\overrightarrow{n}$=-3sinA-cos2A=2sin2A-3sinA-1=2(sinA-$\frac{3}{4}$)2-$\frac{17}{8}$,
∵0<A<$\frac{2π}{3}$,∴0<sinA≤1.
∴當(dāng)sinA=$\frac{3}{4}$時,取得最小值為-$\frac{17}{8}$.
點(diǎn)評 本題考查余弦定理的應(yīng)用,考查向量知識的運(yùn)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -2 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{17}}}{3}$ | B. | $\frac{{2\sqrt{6}}}{3}$ | C. | $\frac{{\sqrt{33}}}{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{11}}{2}$-1 | B. | $\frac{\sqrt{10}}{2}$-1 | C. | 2 | D. | $\sqrt{3}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x-2 | B. | $y={x^{\frac{1}{3}}}$ | C. | y=2|x| | D. | y=|x-1|+|x+1| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 8 | D. | 11 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com