17.已知傾斜角為θ的直線l與直線m:x-2y+3=0垂直,則sin2θ=( 。
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$-\frac{4}{5}$D.$-\frac{5}{4}$

分析 求出直線l的斜率是-2,即tanθ=-2,根據(jù)同角的三角函數(shù)的關(guān)系求出sinθ,cosθ的值,根據(jù)二倍角公式計算即可.

解答 解:直線m:x-2y+3=0的斜率是:$\frac{1}{2}$,
∵l⊥m,
∴直線l的斜率是-2,
故tanθ=-2,∴$\frac{π}{2}$<θ<$\frac{2π}{3}$,
∴$\left\{\begin{array}{l}{\frac{sinθ}{cosθ}=-2}\\{{sin}^{2}θ{+cos}^{2}θ=1}\end{array}\right.$,
解得:sinθ=$\frac{2\sqrt{5}}{5}$,cosθ=-$\frac{\sqrt{5}}{5}$,
∴sin2θ=2sinθcosθ=-$\frac{4}{5}$,
故選:C.

點評 本題考查了直線的垂直關(guān)系,考查同角的三角函數(shù)的關(guān)系以及二倍角公式,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)y=f(x)的定義域是[1,2016],則函數(shù)g(x)=$\frac{f(x+1)}{x-1}$的定義域是( 。
A.[0,2015]B.[0,1)∪(1,2015]C.(1,2016]D.[-1,1)∪(1,2015]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)$f(x)=2sin(ωx+\frac{π}{6})-1(ω>0)$的圖象向右平移$\frac{2π}{3}$個單位后與原圖象重合,則ω的最小值是( 。
A.3B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知等差數(shù)列{an}的公差d≠0,且a32=a1a9,則$\frac{{a}_{3}}{{a}_{6}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,圓O的直徑AB=4,P是AB延長線上一點,BP=1,割線PCD交圓O于點C,D,過點P作AP的垂線,交直線AC于點E,交直線AD于點F.
(1)求證:∠ACD=∠F;
(2)若PE=1,求EF的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知一個球的大圓的周長為6π厘米,則這個球的體積為36π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知拋物線y2=8x的準(zhǔn)線過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦點,且被雙曲線解得的線段長為6,則雙曲線的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=1-xlnx-ax在(1,f(1))處的切線與2x+y+2=0平行
(Ⅰ)求實數(shù)a的值和f(x)的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)g(x)=-x2+2kx(k>0),若對任意x2∈[0,1]總存在x1∈(0,+∞)使得g(x2)<f(x1),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在平面內(nèi),$\overrightarrow{A{B_1}}$⊥$\overrightarrow{A{B_2}}$,|$\overrightarrow{O{B_1}}$|=|$\overrightarrow{O{B_2}}$|=2,$\overrightarrow{AP}$=$\overrightarrow{A{B_1}}$+$\overrightarrow{A{B_2}}$,若|${\overrightarrow{OP}}$|<1,則|${\overrightarrow{OA}}$|的取值范圍是($\sqrt{7}$,2$\sqrt{2}$].

查看答案和解析>>

同步練習(xí)冊答案