5.奇函數(shù)f(x)滿足f(x+2)=-f(x),當(dāng)x∈(0,1)時(shí),f(x)=3x+$\frac{1}{2}$,則f(log354)=( 。
A.-2B.-$\frac{7}{6}$C.$\frac{7}{6}$D.2

分析 由f(x+2)=-f(x)得f(x+4)=f(x),可得到函數(shù)f(x)的周期是4,利用對數(shù)的運(yùn)算性質(zhì)、函數(shù)的周期性和奇偶性,將f(log354)轉(zhuǎn)化為-$f({log}_{3}\frac{3}{2})$,代入函數(shù)解析式求出$f({log}_{3}\frac{3}{2})$的值,即可得到f(log354)的值.

解答 解:∵f[(x+2)+2]=-f(x+2)=f(x),
∴f(x)是以4為周期的奇函數(shù),
又∵$f({log}_{3}54)=f(lo{g}_{3}^{81×\frac{2}{3}})=f(4+{log}_{3}\frac{2}{3})=f({log}_{3}\frac{2}{3})=f(-{log}_{3}\frac{3}{2})=-f({log}_{3}\frac{3}{2})$,
∵$0<{log_3}\frac{3}{2}<1$,∴$f({{{log}_3}\frac{3}{2}})={3^{{{log}_3}\frac{3}{2}}}+\frac{1}{2}=\frac{3}{2}+\frac{1}{2}=2$,∴f(log354)=-2,
故選:A.

點(diǎn)評 本題考查函數(shù)的周期性和奇偶性的綜合應(yīng)用,以及對數(shù)的運(yùn)算性質(zhì),考查轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)n∈N*,函數(shù)f(x)=$\frac{lnx}{{x}^{n}}$,函數(shù)g(x)=$\frac{{e}^{x}}{{x}^{n}}$,x∈(0,+∞).
(Ⅰ)當(dāng)n=1時(shí),寫出函數(shù)y=f(x)-2零點(diǎn)個(gè)數(shù),并說明理由;
(Ⅱ)若曲線y=f(x)與曲線y=g(x)分別位于直線l:y=1的兩側(cè),求n的所有可能取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}(n∈N*)是首項(xiàng)為2,公比為3的等比數(shù)列,則a1C${\;}_{6}^{0}$-a2C${\;}_{6}^{1}$+a3C${\;}_{6}^{2}$-a4C${\;}_{6}^{3}$+a5C${\;}_{6}^{4}$-a6C${\;}_{6}^{5}$+a7C${\;}_{6}^{6}$=128.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+2≥0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域的面積是( 。
A.4$\sqrt{2}$B.4C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a∈R,復(fù)數(shù)z=$\frac{n-i}{1-i}$是純虛數(shù)(i是虛數(shù)單位),則a=( 。
A.-$\sqrt{2}$B.-1C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,點(diǎn)A,B分別為橢圓的右頂點(diǎn)和上頂點(diǎn),且|AB|=$\sqrt{7}$.
(Ⅰ)試求橢圓的方程;
(Ⅱ)斜率為$\frac{\sqrt{3}}{2}$的直線l與橢圓交于P、Q兩點(diǎn),點(diǎn)P在第一象限,求證A、P、B、Q四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{x+2y-3≥0}\\{2x+y-3≤0}\end{array}\right.$,則u=2x+y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對于原命題“正弦函數(shù)不是分段函數(shù)”,陳述正確的是( 。
A.否命題是“正弦函數(shù)是分段函數(shù)
B.逆否命題是“分段函數(shù)不是正弦函數(shù)”
C.逆否命題是“分段函數(shù)是正弦函數(shù)”
D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x+$\frac{1}{x}$
(1)求證:函數(shù)y=f(x)是奇函數(shù); 
(2)若a>b>1,試比較f(a)和f(b)的大。

查看答案和解析>>

同步練習(xí)冊答案