分析 (1)根據(jù)函數(shù)奇偶性的定義即可證明函數(shù)y=f(x)是奇函數(shù);
(2)利用作差法即可比較大。
解答 證明:(1)函數(shù)$f(x)=x+\frac{1}{x}$的定義域?yàn)椋簒∈R,x≠0,關(guān)于原點(diǎn)對稱,
又$f(-x)=-x+\frac{1}{-x}=-(x+\frac{1}{x})=-f(x)$
故函數(shù)y=f(x)是奇函數(shù).…(3分)
(2)f(a)-f(b)=a+$\frac{1}{a}$-b-$\frac{1}$=(a-b)+($\frac{1}{a}$-$\frac{1}$)=a-b+$\frac{b-a}{ab}$=(a-b)(1-$\frac{1}{ab}$)=(a-b)$•\frac{ab-1}{ab}$,
∵a>b>1,∴a-b>0,ab>1,
∴f(a)-f(b)>0,
∴f(a)>f(b).…(8分)
點(diǎn)評 本題主要考查函數(shù)奇偶性的判斷,以及函數(shù)值的大小比較,利用作差法是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -$\frac{7}{6}$ | C. | $\frac{7}{6}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{a}$-$\sqrt$>$\sqrt{a-b}$ | B. | $\sqrt{a}$-$\sqrt$<$\sqrt{a-b}$ | C. | $\sqrt{a}$-$\sqrt$=$\sqrt{a-b}$ | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-2(x-30)(x-60) | B. | y=-2(x-30)(x-45) | C. | y=(x-45)2+450 | D. | y=-2(x-30)2+450 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{7}{25}$ | B. | $\frac{7}{25}$ | C. | $-\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {6,12} | B. | {3,9} | C. | {0,3,9} | D. | {0,6,12} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com