11.設(shè)a,b,c∈R,則下列正確的是( 。
A.若ac>bc,則a>bB.若a2>b2,則a>bC.若$\sqrt{a}$<$\sqrt$,則a<bD.若$\frac{1}{a}$>$\frac{1}$,則a<b

分析 A.取c<0,則a>b不成立;
B.取a=-3,b=-2,則a>b不成立;
C.由于a,b非負(fù),所以兩邊同時(shí)平方得a<b,故C正確;
D.取a=1,b=-1,則a<b不成立;

解答 解:依次對各選項(xiàng)進(jìn)行判斷,
A.取c<0,則a>b不成立;
B.取a=-3,b=-2,則a>b不成立;
C.由于a,b非負(fù),所以兩邊同時(shí)平方得a<b,故C正確;
D.取a=1,b=-1,則a<b不成立;
故選C.

點(diǎn)評 本題主要考查了不等式的基本性質(zhì),可用特殊值逐個(gè)選項(xiàng)進(jìn)行檢驗(yàn),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,已知a=2,b=5,c=4,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知遞增數(shù)列{an}的通項(xiàng)公式是an=n2+kn+4,則實(shí)數(shù)k的取值范圍是( 。
A.(-2,+∞)B.(-3,+∞)C.(-3,-2)D.(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.化簡:
(1)sin(π+α)cos(-α)+sin(2π-α)cos(π-α);
(2)sinαcos(π+α)tan(-π-α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若0<α<2π,cosα>$\frac{\sqrt{3}}{2}$,sinα<$\frac{1}{2}$,則角α的取值范圍是(  )
A.(-$\frac{π}{6}$,$\frac{π}{6}$)B.(0,$\frac{π}{6}$)C.(0,$\frac{π}{6}$)∪($\frac{5π}{3}$,2π)D.(0,$\frac{π}{6}$)∪($\frac{11π}{6}$,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)直線l:y=kx+1與曲線f(x)=ax2+2x+b+ln(x+1)(a>0)相切于點(diǎn)P(0,f(0)).
(1)求b,k的值;
(2)若直線l與曲線y=f(x)有且只有一個(gè)公共點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,若sinA=cosB=$\frac{1}{2}$,則∠C=(  )
A.45°B.60°C.30°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.解方程
(1)${9}^{{x}^{2}-3x}$=$\frac{1}{81}$
(2)log4(3-x)=log4(2x+1)+log4(3+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\vec a•\vec b+\frac{1}{2}$,其中$\vec a=(\sqrt{3}sinx-cosx,-1)$,$\vec b=(cosx,1)$.
(1)求函數(shù)f(x)的最小正周期及單調(diào)區(qū)間;
(2)設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,且c=3,f(C)=0,若sin(A+C)=2sinA,求a、b值.

查看答案和解析>>

同步練習(xí)冊答案