5.方程$\frac{x^2}{4-t}+\frac{y^2}{t-1}=1$表示曲線C,有下列命題①若曲線C為橢圓,則1<t<4,②若曲線C為雙曲線,則t<1或t>4,③曲線C不可能是圓,④若曲線C表示橢圓且長軸在x軸,則$1<t<\frac{3}{2}$,則以上命題正確的有( 。
A.2個B.3個C.1個D.4個

分析 根據(jù)曲線方程的特點(diǎn),結(jié)合橢圓雙曲線的標(biāo)準(zhǔn)方程分別判斷即可.

解答 解:①當(dāng)1<t<4且t≠$\frac{5}{2}$時,曲線表示橢圓,所以不正確;
②若曲線C表示雙曲線,則(4-t)(t-1)<0,解得t>4或t<1,所以正確;
③t≠$\frac{5}{2}$時,曲線C表示圓,不正確;
④若曲線C表示焦點(diǎn)在x軸上的橢圓,則4-t>t-1>0,解得1<k<$\frac{5}{2}$,所以不正確.
故選:C.

點(diǎn)評 本題主要考查圓錐曲線的方程,根據(jù)橢圓和雙曲線的標(biāo)準(zhǔn)方程和定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a(x<1)}\\{{a}^{x}(x≥1)}\end{array}\right.$是定義在(-∞,+∞)上是減函數(shù),則a的取值范圍是( 。
A.[$\frac{1}{6}$,$\frac{1}{3}$)B.(0,$\frac{1}{3}$)C.(0,$\frac{1}{6}$]D.($\frac{1}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知海島B在海島A的北偏東45°的方向上,兩島相距10海里.小船P從海島B以2海里/小時的速度沿直線向海島A移動,同時小船Q從海島A出發(fā),沿北偏西15°方向以4海里/小時的速度移動.
(1)求小船航行過程中,兩船相距的最近距離;
(2)求小船P處于小船Q的正東方向時,小船航行的時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}的前n項(xiàng)和Sn=3n2-2n,則使$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$<$\frac{1}{20}$log8m對所有n∈N*都成立的正整數(shù)m的最小值為210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題“?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$≤1”的否定為( 。
A.?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$>1B.?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$≥1
C.?x∈R,3x+$\frac{1}{{3}^{{x}$>1D.?x∈R,3x+$\frac{1}{{3}^{{x}$<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.(x+$\frac{1}{x}$)(2x-$\frac{a}{x}$)5的展開式中各項(xiàng)系數(shù)的和為2,則該展開式中常數(shù)項(xiàng)為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知{an}為等差數(shù)列,且a3=5,a5=5,數(shù)列{bn}的前n項(xiàng)的和為Sn,且2Sn=1-bn(n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如果復(fù)數(shù)z=$\frac{2+ai}{1+i}({a∈R})$為純虛數(shù),則|z|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x-2|.
(1)解不等式:f(x+1)+f(x+2)<4;
(2)已知a>2,求證:?x∈R,f(ax)+af(x)>2恒成立.

查看答案和解析>>

同步練習(xí)冊答案