20.設(shè)函數(shù)f(x)=kax-a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)若f(1)<0,試求不等式  f(x2+2x)+f(x-4)>0的解集;
(2)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x),x∈[1,+∞)的最小值為-2,求m的值.

分析 (1)根據(jù)f(x)是定義域?yàn)镽的奇函數(shù),可得k=1,從而f(x)=ax-a-x(a>0,且a≠1),利用f(1)<0,可得0<a<1,從而可證f(x)在R上單調(diào)遞減,故原不等式化為x2+2x《4-x,從而可求不等式的解集;
(2)根據(jù)f(1)=$\frac{3}{2}$確定a=2的值,從而可得函數(shù)g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x2-2m(2x-2-x)+2.令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x為增函數(shù),可得t≥f(1)=$\frac{3}{2}$,令h(t)=t2-2mt+2=(t-m)2+2-m2。╰≥$\frac{3}{2}$),分類討論,利用最小值為-2,可求m的值.

解答 解:(1)∵f(x)是定義域?yàn)镽的奇函數(shù),∴f(0)=0,可k-1=0,即k=1,
故f(x)=ax-a-x(a>0,且a≠1)
∵f(1)<0,∴a-$\frac{1}{a}$<0,又a>0且a≠1,∴0<a<1.
f′(x)=axlna+$\frac{lna}{{a}^{x}}$,
∵0<a<1,∴l(xiāng)na<0,而ax+$\frac{1}{{a}^{x}}$>0,
∴f′(x)<0,∴f(x)在R上單調(diào)遞減.
原不等式化為:f(x2+2x)>f(4-x),
∴x2+2x<4-x,即x2+3x-4<0
∴-4<x<1,
∴不等式的解集為{x|-4<x<1}.
(2)∵f(1)=$\frac{3}{2}$,∴a-$\frac{1}{a}$=$\frac{3}{2}$,即2a2-3a-2=0,∴a=2或a=-$\frac{1}{2}$(舍去).
∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x2-2m(2x-2-x)+2.
令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x為增函數(shù)
∵x≥1,∴t≥f(1)=$\frac{3}{2}$,
令h(t)=t2-2mt+2=(t-m)2+2-m2 (t≥$\frac{3}{2}$)
若m≥$\frac{3}{2}$,當(dāng)t=m時(shí),h(t)min=2-m2=-2,∴m=2
若m<$\frac{3}{2}$,當(dāng)t=$\frac{3}{2}$時(shí),h(t)min=$\frac{17}{4}$-3m=-2,
解得m=$\frac{25}{12}$>$\frac{3}{2}$,舍去.
綜上可知m=2.

點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性與奇偶性的綜合,考查解不等式,考查二次函數(shù)最值的研究,解題的關(guān)鍵是確定函數(shù)的單調(diào)性,確定參數(shù)的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x+1)=x2+2x,則f(x)的單調(diào)遞減區(qū)間是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,且滿足 2acosC=2b-c.
(1)求sinA的值;
(2)若a=1,求△ABC的周長(zhǎng)l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合A={1,2,3},B={x|x=2k+1,k∈Z},則A∩B=( 。
A.{1}B.{1,2}C.{1,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù) f(x)=|x+1|+|x-1|,則它( 。
A.是奇函數(shù)B.是偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.是非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.從6名女同學(xué)和4名同學(xué)中選出4名組建小組,按下列條件,分別求選法種數(shù).
(1)甲必須參加;
(2)甲必須參加,而乙不參加;
(3)甲、乙至少有一人參加;
(4)甲、乙至多有一人參加;
(5)至少有兩名女同學(xué);
(6)擔(dān)任不同的職務(wù);
(7)甲擔(dān)任組長(zhǎng),其余3人擔(dān)任不同的職務(wù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=kx2+(k-3)x+1的圖象與x軸在原點(diǎn)的右側(cè)有交點(diǎn),試確定實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.關(guān)于函數(shù)f(x)=3x+x2+2x-1的零點(diǎn),下列說法中正確的個(gè)數(shù)是( 。
①函數(shù)f(x)=0在x<0時(shí)有兩個(gè)零點(diǎn);
②函數(shù)f(x)在(0,+∞)上有兩個(gè)零點(diǎn);
③函數(shù)的兩個(gè)零點(diǎn)一個(gè)大于0,另一個(gè)小于0;
④函數(shù)的一個(gè)零點(diǎn)為0,另一個(gè)零點(diǎn)小于0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=2${\;}^{\frac{1+x}{1-x}}$的定義域?yàn)椋?∞,1)∪(1,+∞),值域?yàn)椋?,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案