分析 (1)根據(jù)f(x)是定義域?yàn)镽的奇函數(shù),可得k=1,從而f(x)=ax-a-x(a>0,且a≠1),利用f(1)<0,可得0<a<1,從而可證f(x)在R上單調(diào)遞減,故原不等式化為x2+2x《4-x,從而可求不等式的解集;
(2)根據(jù)f(1)=$\frac{3}{2}$確定a=2的值,從而可得函數(shù)g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2.令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x為增函數(shù),可得t≥f(1)=$\frac{3}{2}$,令h(t)=t2-2mt+2=(t-m)2+2-m2。╰≥$\frac{3}{2}$),分類討論,利用最小值為-2,可求m的值.
解答 解:(1)∵f(x)是定義域?yàn)镽的奇函數(shù),∴f(0)=0,可k-1=0,即k=1,
故f(x)=ax-a-x(a>0,且a≠1)
∵f(1)<0,∴a-$\frac{1}{a}$<0,又a>0且a≠1,∴0<a<1.
f′(x)=axlna+$\frac{lna}{{a}^{x}}$,
∵0<a<1,∴l(xiāng)na<0,而ax+$\frac{1}{{a}^{x}}$>0,
∴f′(x)<0,∴f(x)在R上單調(diào)遞減.
原不等式化為:f(x2+2x)>f(4-x),
∴x2+2x<4-x,即x2+3x-4<0
∴-4<x<1,
∴不等式的解集為{x|-4<x<1}.
(2)∵f(1)=$\frac{3}{2}$,∴a-$\frac{1}{a}$=$\frac{3}{2}$,即2a2-3a-2=0,∴a=2或a=-$\frac{1}{2}$(舍去).
∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2.
令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x為增函數(shù)
∵x≥1,∴t≥f(1)=$\frac{3}{2}$,
令h(t)=t2-2mt+2=(t-m)2+2-m2 (t≥$\frac{3}{2}$)
若m≥$\frac{3}{2}$,當(dāng)t=m時(shí),h(t)min=2-m2=-2,∴m=2
若m<$\frac{3}{2}$,當(dāng)t=$\frac{3}{2}$時(shí),h(t)min=$\frac{17}{4}$-3m=-2,
解得m=$\frac{25}{12}$>$\frac{3}{2}$,舍去.
綜上可知m=2.
點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性與奇偶性的綜合,考查解不等式,考查二次函數(shù)最值的研究,解題的關(guān)鍵是確定函數(shù)的單調(diào)性,確定參數(shù)的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {1,2} | C. | {1,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是奇函數(shù) | B. | 是偶函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 是非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com