17.已知集合S={x|x≤-1或x≥2},P={x|a≤x≤a+3},若S∪P=R,則實(shí)數(shù)a的取值集合為( 。
A.{a|a≤0}B.{a|0≤a≤1}C.{a|a=1}D.{a|a=-1}

分析 由題意可得:$\left\{\begin{array}{l}{a≤-1}\\{a+3≥2}\end{array}\right.$,解得a即可得出.

解答 解:∵集合S={x|x≤-1或x≥2},P={x|a≤x≤a+3},S∪P=R,
∴$\left\{\begin{array}{l}{a≤-1}\\{a+3≥2}\end{array}\right.$,解得a=-1.
∴實(shí)數(shù)a的取值集合為{a|a=-1}.
故選:D.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算性質(zhì)、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.點(diǎn)D是△ABC中AB邊的中點(diǎn),CA=CB,E是CD的中點(diǎn),AE的延長(zhǎng)線交BC于F,記$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{DC}$=$\overrightarrow$,則$\overrightarrow{AF}$=( 。
A.$\frac{1}{4}$$\overrightarrow{a}$+$\overrightarrow$B.$\frac{1}{2}\overrightarrow{a}$+$\frac{1}{2}\overrightarrow$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知一幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.4$-\frac{π}{6}$B.4$-\frac{π}{3}$C.4$+\frac{π}{3}$D.12$-\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)P是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上一點(diǎn),過橢圓中心作直線交橢圓于A、B兩點(diǎn),直線PA、PB的斜率分別為k1,k2,且${k_1}{k_2}=-\frac{1}{4}$,則橢圓離心率為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)F是橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn),過F的直線與橢圓C交于A,B兩點(diǎn),分別過A,B作橢圓C的切線并相交于點(diǎn)P,線段OP(O為坐標(biāo)原點(diǎn))交橢圓C于點(diǎn)Q,滿足$\overrightarrow{OQ}=2\overrightarrow{QP}$,且$\overrightarrow{FQ}•\overrightarrow{OF}=0$,則橢圓C的離心率為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)點(diǎn)P、Q分別在直線3x-y+5=0和3x-y-13=0上運(yùn)動(dòng),線段PQ中點(diǎn)為M(x0,y0),且x0+y0>4,則$\frac{y_0}{x_0}$的取值范圍為[1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=loga(x-1)+m(a>0,且a≠1)恒過定點(diǎn)(n,2),則m+n的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.F1,F(xiàn)2分別為橢圓$\frac{x^2}{4}+\frac{y^2}{2}$=1的左右焦點(diǎn),P為橢圓上一動(dòng)點(diǎn),F(xiàn)2關(guān)于直線PF1的對(duì)稱點(diǎn)為M,F(xiàn)1關(guān)于直線PF2的對(duì)稱點(diǎn)為N,則當(dāng)|MN|的最大值為( 。
A.2B.3C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)偶函數(shù)f(x)對(duì)任意x∈R,都有f(x+3)=-$\frac{1}{f(x)}$,且當(dāng)x∈[-3,-2]時(shí),f(x)=4x,則f(113.5)=$\frac{1}{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案