19.如圖,四邊形ABCD為正方形,四邊形AEFD為梯形,F(xiàn)D∥EA,F(xiàn)D⊥平面ABCD,F(xiàn)D=2EA=2AD.
(Ⅰ)證明:平面EFC⊥平面DCE;
(Ⅱ)求直線CE與平面BDE所成角的正弦值.

分析 (I)根據(jù)線面垂直的判定可證EF⊥平面DCE,即可證明平面EFC⊥平面DCE;
(II)建立坐標(biāo)系,利用向量法求直線CE與平面BDE所成角的正弦值.

解答 (I)證明:由已知:FD⊥平面ABCD,∴FD⊥CD.
∵CD⊥AD,AD∩FD=D,
∴CD⊥平面AEFD,∴EF⊥CD,
設(shè)FD=2EA=2AD=2,∴DE=EF=$\sqrt{2}$,
∴DF2=DE2+EF2,
∴EF⊥ED,
∵CD∩ED=D,∴EF⊥平面DCE,
∵EF?平面EFC,
∴平面EFC⊥平面DCE;
(Ⅱ)解:以DA,DF,DC為x,y,z軸,建立如圖所示的坐標(biāo)系,設(shè)AD=1,則D(0,0,0),B(1,0,1),E(1,1,0),C(0,0,1),
∴$\overrightarrow{CE}$=(1,1,-1),$\overrightarrow{DB}$=(1,0,1),$\overrightarrow{DE}$=(1,1,0),
設(shè)平面BDE的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{x+z=0}\\{x+y=0}\end{array}\right.$,
取$\overrightarrow{n}$=(1,-1,-1),
∴直線CE與平面BDE所成角的正弦值=|$\frac{1-1+1}{\sqrt{3}•\sqrt{3}}$|=$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查線面、面面垂直的判定,考查線面角,考查向量知識(shí)的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列四個(gè)函數(shù)中,在(0,+∞)上為增函數(shù)的是(  )
A.f(x)=3-xB.f(x)=-$\frac{1}{x+1}$C.f(x)=x2-3xD.f(x)=-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若直線x+2y+1=0與直線ax+y-2=0互相垂直,那么a的值等于(  )
A.-2B.-$\frac{2}{3}$C.-$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an},公差為2,的前n項(xiàng)和為Sn,且a1,S2,S4成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{2}{{a}_{n}•{a}_{n+1}}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=(a+b-3)x+1,g(x)=ax,其中a,b∈[0,3],求兩個(gè)函數(shù)在定義域內(nèi)都為增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.命題p:函數(shù)f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在R上是增函數(shù),命題q:復(fù)數(shù)z=(m2+m+1)+(m2-3m)i,m∈R表示的點(diǎn)位于復(fù)平面第四象限,如果命題“p∧q”為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實(shí)數(shù)a滿足f(lga)+f(lg$\frac{1}{a}$)≤2f(1),則a的取值范圍是( 。
A.(-∞,10]B.[$\frac{1}{10}$,10]C.(0,10]D.[$\frac{1}{10}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在圓x2+y2-2x-6y=15內(nèi),過點(diǎn)E(0,1)的最長(zhǎng)弦和最短弦分別是AC和BD,則|AC|•|BD|的值為( 。
A.$80\sqrt{5}$B.$60\sqrt{5}$C.$40\sqrt{5}$D.$20\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)x∈{-1,1},y∈{-2,0,2},則以(x,y)為坐標(biāo)的點(diǎn)落在不等式x+2y≥1所表示的平面區(qū)域內(nèi)的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案