【題目】如圖,在四棱錐中,側(cè)棱,底面為直角梯形,其中,.
(1)求證:側(cè)面PAD⊥底面ABCD;
(2)求三棱錐的表面積.
【答案】(1)詳見(jiàn)解析(2)
【解析】
試題分析:(1)取AD中點(diǎn)O,連接PO、CO,利用等腰三角形的性質(zhì)可得PO⊥AD且PO=1.又底面ABCD為直角梯形,可得四邊形ABCO是正方形,CO⊥AD且CO=1,由PC2=CO2+PO2,可得PO⊥OC,因此PO⊥平面ABCD.即可證明側(cè)面PAD⊥底面ABCD.(2)S△ACD=ADCO,S△PAD=ADPO.利用已知可得:△PAC,△PCD都是邊長(zhǎng)為的等邊三角形,故S△PAC=S△PCD=.即可得出
試題解析:(1)取AD中點(diǎn)O,連接PO、CO,由,
得且
又直角梯形中,O為AD中點(diǎn),故四邊形ABCO是正方形,故且CO=1,
故中,,
即,
又,
故
故側(cè)面PAD⊥底面ABCD
(2)
中,
中,
故都是邊長(zhǎng)為的等邊三角形,故
三棱錐的表面積
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)的直線與拋物線相交于點(diǎn),兩點(diǎn),設(shè),
(1)求證:為定值
(2)是否存在平行于軸的定直線被以為直徑的圓截得的弦長(zhǎng)為定值?如果存在,求出該直線方程和弦長(zhǎng),如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(1)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù),當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);
(2)證明:當(dāng),時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱(chēng).
(1)求實(shí)數(shù)的值;
(2)若對(duì)任意的,使得有解,求實(shí)數(shù)的取值范圍;
(3)若時(shí),關(guān)于的方程有四個(gè)不等式的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分.如果前兩次得分之和超過(guò)3分就停止投籃;否則投第三次.某同學(xué)在處的投中率,在處的投中率為,該同學(xué)選擇先在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求隨機(jī)變量的數(shù)學(xué)期望;
(3)試比較該同學(xué)選擇上述方式投籃得分超過(guò)3分與選擇都在處投籃得分超過(guò)3分的概率的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠以千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每一小時(shí)可獲得的利潤(rùn)是元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤(rùn)不低于1500元,求的取值范圍;
(2) 要使生產(chǎn)480千克該產(chǎn)品獲得的利潤(rùn)最大,問(wèn):該廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,、分別為左、右頂點(diǎn),為其右焦點(diǎn),是橢圓上異于、的動(dòng)點(diǎn),且的最小值為-2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過(guò)左焦點(diǎn)的直線交橢圓于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】衡陽(yáng)市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者,現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名后按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場(chǎng)的宣傳活動(dòng),則應(yīng)從第3,4,5組各抽取多少名志愿者?
(2)在(1)的條件下,該市決定在第3,4組的志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com