14.求下列函數(shù)的導(dǎo)函數(shù):
(1)y=e-x+2(2x+1)5;
(2)y=cos(3x一1)-ln(-2x-1);
(3)y=$\frac{\sqrt{2x-1}}{x}$.

分析 根據(jù)復(fù)合函數(shù)的求導(dǎo)法則求導(dǎo).

解答 解:(1)y′=-e-x+2(2x+1)5+10e-x+2(2x+1)4;
(2)y′=-3sin(3x-1)-$\frac{2}{2x+1}$;
(3)y′=$\frac{x(2x-1)^{-\frac{1}{2}}-\sqrt{2x-1}}{{x}^{2}}$=$\frac{1}{x\sqrt{2x-1}}-\frac{\sqrt{2x-1}}{{x}^{2}}$.

點(diǎn)評(píng) 本題考查了復(fù)合函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若直線l被4x+y+6=0和3x-5y-6=0兩條直線截得的線段的中點(diǎn)恰好是坐標(biāo)原點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若sinx=$\frac{3-2m}{2}$,x∈[-$\frac{π}{6}$,$\frac{5π}{6}$],則m的取值范圍是( 。
A.1≤m≤2B.$\frac{1}{2}$≤m≤2C.-$\frac{1}{2}$≤m≤2D.-2≤m≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且$\frac{cosB}{cosC}$=$-\frac{2a+c}$.
(1)求角B的大;
(2)若b=4,求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,6個(gè)扇形區(qū)域A,B,C,D,E,F(xiàn),現(xiàn)給這6個(gè)區(qū)域著色,要求同一個(gè)區(qū)域涂同一種顏色,相鄰的兩個(gè)區(qū)城不得使用同一種顏色,現(xiàn)有4種不同的顏色可用,那么一共有多少種不同的涂色方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知{an}是等比數(shù)列,{bn}是首項(xiàng)為1,公差d大于零的等差數(shù)列,且滿足a1b1=3,a2b2=27,a3b3=135.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求a1b1+a2b2+…+anbn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若復(fù)數(shù)$\frac{2a+2i}{1+i}$(α∈R)是純虛數(shù),則復(fù)數(shù)2a+2i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{m}{x}$+lnx+x,g(x)=x3-3x.
(I)若m=2,求f(x)的極值;
(Ⅱ)若對(duì)于任意的s∈[$\frac{1}{2}$,2],存在t∈[$\frac{1}{2}$,2]有f(s)≤g(t),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=6,a1=4,則S5等于( 。
A.-2B.0C.5D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案