分析 (1)設{an}是公比為q的等比數(shù)列,運用等差數(shù)列和等比數(shù)列的通項公式,解方程可得公比和公差,即可得到所求通項公式;
(2)運用數(shù)列的求和方法:錯位相減法,結合等比數(shù)列的求和公式,即可得到所求和.
解答 解:(1)設{an}是公比為q的等比數(shù)列,
由a1b1=3,a2b2=27,a3b3=135,
可得a1=3,3q(1+d)=27,3q2(1+2d)=135,
解得q=3,d=2,
即有an=a1qn-1=3•3n-1=3n;
bn=b1+(n-1)d=1+2(n-1)=2n-1;
(2)令Sn=a1b1+a2b2+…+anbn=1•3+3•32+5•33+…+(2n-1)•3n,
3Sn=1•32+3•33+5•34+…+(2n-1)•3n+1,
相減可得-2Sn=3+2(32+33+…+3n)-(2n-1)•3n+1
=3+2•$\frac{9(1-{3}^{n-1})}{1-3}$-(2n-1)•3n+1,
化簡可得Sn=(n-1)•3n+1+3.
點評 本題考查等差數(shù)列和等比數(shù)列的通項公式的運用,考查數(shù)列的求和方法:錯位相減法,同時考查等比數(shù)列的求和公式的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com