6.等差數(shù)列{an}的前n項和為Sn,若S3=6,a1=4,則S5等于( 。
A.-2B.0C.5D.10

分析 根據(jù)題意,利用等差數(shù)列的通項公式與前n項和公式,即可求出S5的值.

解答 解:根據(jù)題意,設(shè)等差數(shù)列的公差為d,
則${S_3}=6=\frac{3}{2}({{a_1}+{a_3}})$且a3=a1+2d,
又a1=4,
解得d=-2,a3=0;
所以S5=5a3=5×0=0.
故選:B.

點評 本題考查了等差數(shù)列的通項公式與前n項和公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的導(dǎo)函數(shù):
(1)y=e-x+2(2x+1)5
(2)y=cos(3x一1)-ln(-2x-1);
(3)y=$\frac{\sqrt{2x-1}}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在區(qū)間($\frac{1}{3}$,4)上有極值點,則實數(shù)a的取值范圍是(2,$\frac{17}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線y2=2px的焦點為F,準(zhǔn)線方程是x=-1.
(I)求此拋物線的方程;
(Ⅱ)設(shè)點M在此拋物線上,且|MF|=3,若O為坐標(biāo)原點,求△OFM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,圓x2+y2=8內(nèi)有一點P(-1,2),AB為過點P的弦.
(1)當(dāng)弦AB的傾斜角為135°時,求AB所在的直線方程及|AB|;
(2)當(dāng)弦AB被點P平分時,寫出直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若經(jīng)過點(3,a)、(-2,0)的直線與經(jīng)過點(3,-4)且斜率為$\frac{1}{2}$的直線垂直,則a的值為-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,b=2,$cosC=\frac{3}{4}$,△ABC的面積為$\frac{{\sqrt{7}}}{4}$.
(1)求a的值;
(2)求sinA值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=$\frac{x-a}{{{x^2}+1}}$是奇函數(shù),g(x)=x2+bx+1為偶函數(shù).
(1)求a,b的值;
(2)對任意x∈R不等式2f(x)g(x)<g(x)-m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,F(xiàn)1,F(xiàn)2是橢圓C的兩個焦點,P是C上任意一點,且△PF1F2的周長為8+4$\sqrt{3}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點A,B,已知點A的坐標(biāo)為(-a,0),點Q(0,-$\frac{3\sqrt{3}}{2}$)在線段AB的垂直平分線上,求弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案