分析 (1)設(shè)等差數(shù)列{an}的首項為a1,公差為d,利用等差數(shù)列的通項公式即可得出;
(2)易知:${b_n}=\frac{1}{4}•{2^{n+2}}={2^n}$,再利用等比數(shù)列的前n項和公式即可得出.
解答 解:(1)設(shè)等差數(shù)列{an}的首項為a1,公差為d,
則a2=a1+2d=5,S15=15a1+15×7d=150,
解得a1=3,d=1,∴an=n+2.
(2)易知:${b_n}=\frac{1}{4}•{2^{n+2}}={2^n}$,
∴Tn=b1+b2+…+bn=21+22+…+2n=$\frac{2({2}^{n}-1)}{2-1}$=2n+1-2.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}(\overrightarrow a+\overrightarrow b)$ | B. | $\frac{1}{2}(\overrightarrow a-\overrightarrow b)$ | C. | $\overrightarrow a+\overrightarrow b$ | D. | $\overrightarrow a-\overrightarrow b$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{9}$ | B. | $-\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | $-\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 100($\sqrt{3}$+1)海里 | B. | 50($\sqrt{3}+1$)海里 | C. | 50$\sqrt{3}$海里 | D. | 50$\sqrt{6}$海里 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | 1+$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | $\sqrt{3}-1$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com