1.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{3x+4y≤12}\end{array}\right.$則z=x-y的最大值為( 。
A.8B.16C.3D.4

分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{3x+4y≤12}\end{array}\right.$作出可行域如圖,

化z=x-y為y=x-z,
由圖可知,當直線y=x-z過A(4,0)時,直線在y軸上的截距最小,z有最大值為4.
故選:D.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.在△ABC中,已知A=60°,B=45°,c=2,求C,a,b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知f(x)=$\frac{1}{3}$x3+x,x∈R,若至少存在一個實數(shù)x使得f(a-x)+f(ax2-1)<0成立,a的范圍為(-∞,$\frac{1+\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.化簡:
(1)$\frac{\sqrt{{a}^{3}^{2}\root{3}{a^{2}}}}{({a}^{\frac{1}{4}}^{\frac{1}{2}})^{4}{a}^{-\frac{1}{3}}^{\frac{1}{3}}}$(a>0,b>0);
(2)(-$\frac{27}{8}$)${\;}^{-\frac{2}{3}}$+(0.002)${\;}^{-\frac{1}{2}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$-$\sqrt{3}$)0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列命題是假命題的是( 。
A.有理數(shù)是實數(shù)B.末位是零的實數(shù)能被2整除
C.?x0∈R,2x0+3=0D.?x∈R,x2-2x>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=1+cos2x-sin2x-a(a∈R).
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當x∈[0,$\frac{π}{2}$]時,函數(shù)f(x)的最小值是-2,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列說法中,正確的有( 。
①若任意x1,x2∈A,當x1<x2時,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,則y=f(x)在A上是增函數(shù);
②函數(shù)y=x2在R上是增函數(shù);
③函數(shù)y=-$\frac{1}{x}$在定義域上是增函數(shù);
④函數(shù)y=$\frac{1}{x}$的單調(diào)區(qū)間是(-∞,0)∪(0,+∞).
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.將函數(shù)y=(2x-2)ex-1的圖象向左平移1個單位得到函數(shù)f(x)的圖象,則( 。
A.x=-$\frac{1}{2}$為f(x)的極大值點B.x=1為f(x)的極小值點
C.x=-1為f(x)的極大值點D.x=-1為f(x)的極小值點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖是一個算法流程圖,則輸出S的值是66.

查看答案和解析>>

同步練習冊答案