9.設(shè)f(x)=$\frac{{x}^{2}-x}{\sqrt{2x+1}}$,g(x)=$\frac{\sqrt{2x+1}}{x-1}$,則f(x)•g(x)=x+1,x∈[-$\frac{1}{2}$,1)∪(1,+∞).

分析 求出已知中兩個函數(shù)的定義域,化簡兩函數(shù)乘積后,可得答案.

解答 解:∵f(x)=$\frac{{x}^{2}-x}{\sqrt{2x+1}}$的定義域?yàn)閇-$\frac{1}{2}$,+∞),
g(x)=$\frac{\sqrt{2x+1}}{x-1}$的定義域?yàn)椋?∞,1)∪(1,+∞),
∴f(x)•g(x)=x+1,x∈[-$\frac{1}{2}$,1)∪(1,+∞),
故答案為:x+1,x∈[-$\frac{1}{2}$,1)∪(1,+∞)

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的解析式的求解,代數(shù)式的化簡,要注意最終結(jié)果受兩個函數(shù)定義域的限制.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=$\frac{x-1}{lg(x+1)}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-1,+∞)B.(-1,1)∪(1,+∞)C.(-1,0)∪(0,+∞)D.(-1,0)∪(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式x2-2x-3<0的解集為(  )
A.{x|-1<x<3}B.C.RD.{x|-3<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.向量$\overrightarrow{a}$在基底{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$}下可以表示為$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,若a在基底{$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$}下可表示為$\overrightarrow{a}$=λ($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)+μ($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$),則λ=$\frac{5}{2}$,μ=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知x∈R+,函數(shù)f($\frac{1}{x}$)=-f(x),f($\frac{2}{x}$)=-f(2x),若x∈[1,2]時,f(x)=(x-1)(x-2),則函數(shù)y=f(x)+$\frac{1}{4}$在區(qū)間[1,100]內(nèi)零點(diǎn)的個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C的方程為:x2+y2-2x-4y+m=0.
(1)求m的取值范圍;
(2)若圓C與直線3x+4y-6=0交于M、N兩點(diǎn),且|MN|=2$\sqrt{3}$,求m的值;
(3)設(shè)直線x-y-1=0與圓C交于A、B兩點(diǎn),是否存在實(shí)數(shù)m,使得以AB為直徑的圓過原點(diǎn),若存在,求出實(shí)數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外一點(diǎn),M是PC的中點(diǎn),在DM上取一點(diǎn)G,過G和AP作平面交平面BDM于GH.求證:GH∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,點(diǎn)A(3,0),點(diǎn)P在橢圓C上.求|PA|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,底面積ABCD為矩形,PA⊥平向ABCD,E為PD的中點(diǎn),AB=AP=1,AD=$\sqrt{3}$,試建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,試求直線PC的一個法向量和平面PCD的一個法向量.

查看答案和解析>>

同步練習(xí)冊答案