分析 如圖所示,建立空間直角坐標(biāo)系A(chǔ)-BDP.$\overrightarrow{PC}$=(1,$\sqrt{3}$,-1),設(shè)直線PC的一個(gè)法向量為$\overrightarrow{u}$=(x,y,z),利用$\overrightarrow{PC}$$•\overrightarrow{u}$=x+$\sqrt{3}$y-z=0,即可得出.$\overrightarrow{PD}$=(0,$\sqrt{3}$,-1),設(shè)平面PCD的一個(gè)法向量$\overrightarrow{v}$=(x1,y1,z1),可得$\left\{\begin{array}{l}{\overrightarrow{PC}•\overrightarrow{v}=0}\\{\overrightarrow{PD}•\overrightarrow{v}=0}\end{array}\right.$,即可得出.
解答 解:如圖所示,建立空間直角坐標(biāo)系A(chǔ)-BDP.
A(0,0,0),B(1,0,0),C(1,$\sqrt{3}$,0),D(0,$\sqrt{3}$,0),P(0,0,1).
$\overrightarrow{PC}$=(1,$\sqrt{3}$,-1),
設(shè)直線PC的一個(gè)法向量為$\overrightarrow{u}$=(x,y,z),
則$\overrightarrow{PC}$$•\overrightarrow{u}$=x+$\sqrt{3}$y-z=0,
取$\overrightarrow{u}$=($\sqrt{3}$,-1,0).
$\overrightarrow{PD}$=(0,$\sqrt{3}$,-1),
設(shè)平面PCD的一個(gè)法向量$\overrightarrow{v}$=(x1,y1,z1),
則$\left\{\begin{array}{l}{\overrightarrow{PC}•\overrightarrow{v}=0}\\{\overrightarrow{PD}•\overrightarrow{v}=0}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{1}+\sqrt{3}{y}_{1}-{z}_{1}=0}\\{\sqrt{3}{y}_{1}-{z}_{1}=0}\end{array}\right.$,
令z1=$\sqrt{3}$,y1=1,x1=0,
∴$\overrightarrow{v}$=(0,1,$\sqrt{3}$).
點(diǎn)評(píng) 本題考查了向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,0) | B. | (-∞,0) | C. | (0,3) | D. | (-3,3) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com