18.已知p:x2-2x-3<0,若-a<x-1<a是p的一個(gè)必要條件但不是充分條件,求使a>b恒成立的實(shí)數(shù)b的取值范圍.

分析 根據(jù)-a<x-1<a是p的一個(gè)必要不充分條件,得到p是1-a<x<1+a的子集,求出a的范圍,從而求出b的范圍即可.

解答 解:∵x2-2x-3<0,
∴p:-1<x<3,
∵-a<x-1<a,
∴1-a<x<1+a
∵-a<x-1<a是p的一個(gè)必要不充分條件,
∴p是1-a<x<1+a的子集
∴1-a<-1,1+a>3
∴a>2
若a>b恒成立,
則b≤2.

點(diǎn)評(píng) 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=1g[(1-a2)x2+3(1-a)x+6]值域?yàn)镽,則實(shí)數(shù)a的取值范圍是( 。
A.(-1,0)B.(-1,-$\frac{5}{11}$)C.[-1,-$\frac{5}{11}$)D.[-1,-$\frac{5}{11}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=ln$\frac{1}{{x}^{2}+2x-8}$的單調(diào)減區(qū)間為(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)8的展開式中系數(shù)最大的項(xiàng)是(  )
A.第3項(xiàng)B.第4項(xiàng)C.第2或第3項(xiàng)D.第3或第4項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=2${\;}^{{x}^{2}-2x-6}$的遞減區(qū)間為(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow{a}$、$\overrightarrow$是不共線的向量,$\overrightarrow{AB}$=λ$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{a}$+μ$\overrightarrow$(λ、μ∈R),當(dāng)A、B、C三點(diǎn)共線時(shí),λ的取值不可能為( 。
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.定義在R上的奇函數(shù)f(x),當(dāng)x∈(0,+∞)時(shí)的解析式為f(x)=-x2+4x-3.
(1)求這個(gè)函數(shù)在R上的解析式;
(2)作出f(x)的圖象,并根據(jù)圖象直接寫出函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=$\left\{\begin{array}{l}{(a-1)x+\frac{5}{2},x≤1}\\{\frac{2a+1}{x},x>1}\end{array}\right.$,在定義域R上單調(diào)遞減,則a的取值范圍是(-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}=2-{(\frac{1}{2})^{n-1}},n∈{N^*}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列bn=$\frac{n}{2}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案