10.定義在R上的奇函數(shù)f(x),當x∈(0,+∞)時的解析式為f(x)=-x2+4x-3.
(1)求這個函數(shù)在R上的解析式;
(2)作出f(x)的圖象,并根據(jù)圖象直接寫出函數(shù)f(x)的單調(diào)減區(qū)間.

分析 (1)令x<0,則-x>0,由x>0時,f(x)=x2-2x,可求得f(-x),而f(x)為定義在R上的奇函數(shù),從而可求得x<0時的解析式,最后用分段函數(shù)表示函數(shù)f(x)的解析式即可.
(2)畫出圖象,由圖象得到單調(diào)區(qū)間.

解答 解:(1)當x<0時,則-x>0,
∴f(-x)=-(-x)2+4(-x)-3=-x2-4x-3,
∵定義在R上的奇函數(shù)f(x),
∴f(0)=0,f(-x)=-f(x),
∴f(x)=x2+4x+3,
∴f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,x>0}\\{0,x=0}\\{{x}^{2}+4x+3,x<0}\end{array}\right.$,
(2)其圖象為:

由圖象可知,函數(shù)f(x)在(-∞,-2),(2,+∞)為減函數(shù).

點評 本題考查奇函數(shù)的解析式的求法,考查函數(shù)的圖象的作法和識別,解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.過點P(2,-3),且傾斜角為120°的直線方程為$\sqrt{3}$x+y+3-2$\sqrt{3}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知y=$\frac{x-2}{x+a}$(a>0)的圖象在(-1,+∞)上遞增,則實數(shù)a的取值范圍是( 。
A.(1,2)B.[2,+∞)C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知p:x2-2x-3<0,若-a<x-1<a是p的一個必要條件但不是充分條件,求使a>b恒成立的實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=ln(1-2x)的單調(diào)減區(qū)間是(-$∞,\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.求下列余弦值:cos2013π=-1;cos(-$\frac{13π}{6}$)=$\frac{\sqrt{3}}{2}$;cos780°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求函數(shù)y=(log2x)2-4log2x+5(1≤x≤2)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=xsinx,記$m=f(-\frac{1}{2})$,$n=f(\frac{π}{3})$,則下列關(guān)系正確的是( 。
A.m<0<nB.0<n<mC.0<m<nD.n<m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)$f(x)=\frac{1}{2}{x^2}-2ax+(2a-1)lnx$,其中a∈R.
(Ⅰ)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)討論函數(shù)y=f(x)的單調(diào)性;
(Ⅲ)當$a>\frac{1}{2}$時,證明對?x∈(0,2),都有f(x)<0.

查看答案和解析>>

同步練習(xí)冊答案