分析 (1)令x<0,則-x>0,由x>0時,f(x)=x2-2x,可求得f(-x),而f(x)為定義在R上的奇函數(shù),從而可求得x<0時的解析式,最后用分段函數(shù)表示函數(shù)f(x)的解析式即可.
(2)畫出圖象,由圖象得到單調(diào)區(qū)間.
解答 解:(1)當x<0時,則-x>0,
∴f(-x)=-(-x)2+4(-x)-3=-x2-4x-3,
∵定義在R上的奇函數(shù)f(x),
∴f(0)=0,f(-x)=-f(x),
∴f(x)=x2+4x+3,
∴f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,x>0}\\{0,x=0}\\{{x}^{2}+4x+3,x<0}\end{array}\right.$,
(2)其圖象為:
由圖象可知,函數(shù)f(x)在(-∞,-2),(2,+∞)為減函數(shù).
點評 本題考查奇函數(shù)的解析式的求法,考查函數(shù)的圖象的作法和識別,解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | [2,+∞) | C. | [1,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m<0<n | B. | 0<n<m | C. | 0<m<n | D. | n<m<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com