分析 (Ⅰ)運(yùn)用n=1時(shí),a1=S1,n≥2時(shí),an=Sn-Sn-1,計(jì)算即可得到所求通項(xiàng);
(Ⅱ)求得bn=$\frac{n}{2}{a_n}$=n•($\frac{1}{2}$)n,由數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,計(jì)算即可得到所求.
解答 解:(Ⅰ)n=1時(shí),a1=S1=1,
n≥2時(shí),an=Sn-Sn-1=2-($\frac{1}{2}$)n-1-2+($\frac{1}{2}$)n-2=($\frac{1}{2}$)n-1,
此式對(duì)于n=1也成立.則有an=($\frac{1}{2}$)n-1;
(Ⅱ)設(shè)數(shù)列bn=$\frac{n}{2}{a_n}$=n•($\frac{1}{2}$)n,
前n項(xiàng)和Tn=1•$\frac{1}{2}$+2•$\frac{1}{4}$+3•$\frac{1}{8}$+…+n•($\frac{1}{2}$)n,
$\frac{1}{2}$Tn=1•$\frac{1}{4}$+2•$\frac{1}{8}$+3•$\frac{1}{16}$+…+n•($\frac{1}{2}$)n+1,
兩式相減可得,$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1
化簡(jiǎn)可得前n項(xiàng)和Tn=2-$\frac{n+2}{{2}^{n}}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)的求法,注意數(shù)列的通項(xiàng)與前n項(xiàng)和的關(guān)系,考查數(shù)列的求和方法:錯(cuò)位相減法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m<0<n | B. | 0<n<m | C. | 0<m<n | D. | n<m<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x-y=0 | B. | x-y+1=0 | C. | x+y-3=0 | D. | x=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,+∞) | B. | (-1,+∞) | C. | (-2,+∞) | D. | (-3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com