15.如圖,點(diǎn)E,F(xiàn)分別是四邊形ABCD的邊AD,BC的中點(diǎn),AB=4,DC=6,$\overrightarrow{AB}$與$\overrightarrow{DC}$所成角是60°.
(1)若$\overrightarrow{EF}$=x$\overrightarrow{AB}$+y$\overrightarrow{DC}$,求實(shí)數(shù)x,y的值;
(2)求線段EF的長(zhǎng)度.

分析 (1)根據(jù)向量加法的幾何意義便可得到:$\left\{\begin{array}{l}{\overrightarrow{EF}=\overrightarrow{EA}+\overrightarrow{AB}+\overrightarrow{BF}}&{①}\\{\overrightarrow{EF}=\overrightarrow{ED}+\overrightarrow{DC}+\overrightarrow{CF}}&{②}\end{array}\right.$,從而①+②便可得出$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{DC}$,從而根據(jù)平面向量基本定理得出$x=\frac{1}{2},y=\frac{1}{2}$;
(2)要求線段EF的長(zhǎng)度,可以考慮求$|\overrightarrow{EF}|$,從而求${\overrightarrow{EF}}^{2}=(\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{DC})^{2}$,這樣進(jìn)行數(shù)量積的計(jì)算即可得出${\overrightarrow{EF}}^{2}$,從而得出$|\overrightarrow{EF}|$.

解答 解:(1)$\left\{\begin{array}{l}{\overrightarrow{EF}=\overrightarrow{EA}+\overrightarrow{AB}+\overrightarrow{BF}}&{①}\\{\overrightarrow{EF}=\overrightarrow{ED}+\overrightarrow{DC}+\overrightarrow{CF}}&{②}\end{array}\right.$;
∵E,F(xiàn)分別是四邊形ABCD的邊AD,BC的中點(diǎn);
∴$\overrightarrow{EA}+\overrightarrow{ED}=\overrightarrow{0},\overrightarrow{BF}+\overrightarrow{CF}=\overrightarrow{0}$;
∴①+②得,$2\overrightarrow{EF}=\overrightarrow{AB}+\overrightarrow{DC}$;
∴$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{DC}$;
∴$x=\frac{1}{2},y=\frac{1}{2}$;
(2)AB=4,DC=6,$\overrightarrow{AB},\overrightarrow{DC}$所成角為60°;
∴${\overrightarrow{EF}}^{2}=\frac{1}{4}{\overrightarrow{AB}}^{2}+\frac{1}{2}\overrightarrow{AB}•\overrightarrow{DC}+\frac{1}{4}{\overrightarrow{DC}}^{2}$=4+6+9=19;
∴$|\overrightarrow{EF}|=\sqrt{19}$;
∴線段EF的長(zhǎng)度為$\sqrt{19}$.

點(diǎn)評(píng) 考查向量加法的幾何意義,相反向量的概念,向量數(shù)乘的運(yùn)算,以及平面向量基本定理,向量數(shù)量積的運(yùn)算及計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知△ABC,角A,B,C的對(duì)邊分別為a,b,c且a2-c2=b(a-b)且c=$\sqrt{6}$
(1)求角C;   
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)y=$\sqrt{x+2}$+$\frac{1}{3-x}$的定義域?yàn)閧x|x≥-2且x≠3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.$\frac{cos(α+π)•si{n}^{2}(α+3π)}{tan(α+4π)•tan(α-π)•si{n}^{3}(\frac{π}{2}+α)}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知x,y∈R,則“x2+y2<1”是“xy+1>x+y”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={x|x2-4x-5<0,x∈N},B={y|y=ln(e-x2)},則A∩B=( 。
A.(-1,1]B.{0,1}C.(-1,$\sqrt{e}$]D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知f(a)=$\frac{sin(π-α)•cos(2π-α)}{cos(-π-α)•tan(π-α)}$,則f(-$\frac{25π}{3}$)的值為(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求符合下列條件的雙曲線的標(biāo)準(zhǔn)方程:
(1)頂點(diǎn)在x軸上,兩頂點(diǎn)間的距離是8,e=$\frac{5}{4}$;
(2)焦點(diǎn)在y軸上,焦距是16,e=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知直線3x+4y+m=0與圓x2+y2+x-2y=0相交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),若OP⊥OQ,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案