13.已知A={x|-3≤x≤4},B={m-1≤x≤m+1},B⊆A,則m∈[-2,3].

分析 B⊆A時(shí),逐一討論集合B所對(duì)應(yīng)集合的情況,求出符號(hào)條件的m的范圍即可

解答 解:∵B⊆A,
∴①若B=∅,則m-1>m+1,不成立.
②若B≠∅,則-3≤m-1≤m+1≤4,
解得,-2≤m≤3.
綜上所述,m∈[-2,3].
故答案為:m[-2,3].

點(diǎn)評(píng) 本題主要考查了集合的包含關(guān)系判斷及應(yīng)用,以及集合關(guān)系中的參數(shù)取值問題,分類討論思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若圓x2+y2-2kx+2y+2=0(k>0)與兩坐標(biāo)軸無公共點(diǎn),那么實(shí)數(shù)k的取值范圍是( 。
A.0<k<$\sqrt{2}$B.1<k<$\sqrt{2}$C.0<k<1D.k>$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下圖給出的是計(jì)算$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{10}}$的值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( 。
A.i≥10B.i>11C.i>10D.i<11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象如圖所示,
(Ⅰ)請(qǐng)畫出函數(shù)f(x)在y軸右側(cè)的圖象,并寫出函數(shù)f(x),x∈R的單調(diào)減區(qū)間;
(Ⅱ)寫出函數(shù)f(x),x∈R的解析式;
(Ⅲ)若函數(shù)g(x)=f(x)-2ax+2,x∈[1,2],求函數(shù)g(x)的最大值h(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\sqrt{(x+1)(x-2)}$的定義域集合是A,函數(shù)$g(x)=\frac{1}{{\sqrt{{x^2}-(2a+1)x+{a^2}+a}}}$的定義域集合是B.
(1)求集合A、B;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,當(dāng)k為何值時(shí),
(1)k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$-k$\overrightarrow$垂直;
(2)|k$\overrightarrow{a}$-2$\overrightarrow$|取得最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.定義:將圓心不同的兩圓方程C1:(x-a12+(y-b12=r12與C2:(x-a22+(y-b22=r22兩邊分別相減所得的直線m稱為兩圓的根軸.
(1)求證:“根軸”所在直線m與兩圓圓心的連線垂直;
(2)求證:“根軸”所在直線m上在圓外部分的點(diǎn)到兩圓的切線長(zhǎng)相等;
(3)利用上述方法判斷,對(duì)于圓C:x2+y2-2x+4y-4=0來說,是否存在斜率為1的直線l,使以l被圓C截得的弦AB為直徑的圓,經(jīng)過原點(diǎn)?若存在,寫出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)點(diǎn)P是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上任一點(diǎn),過P的直線與兩漸近線分別交P1P2,且$\overrightarrow{{P}_{1}P}=2\overrightarrow{P{P}_{2}}$,雙曲線離心率e=$\frac{\sqrt{13}}{2}$,設(shè)O為坐標(biāo)原點(diǎn),△OP1P2的面積為27,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.過雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1上任意一點(diǎn)M作它的一條漸近線的垂線,垂足為N,O為原點(diǎn),則△MON的面積是1.

查看答案和解析>>

同步練習(xí)冊(cè)答案