1.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時,f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象如圖所示,
(Ⅰ)請畫出函數(shù)f(x)在y軸右側(cè)的圖象,并寫出函數(shù)f(x),x∈R的單調(diào)減區(qū)間;
(Ⅱ)寫出函數(shù)f(x),x∈R的解析式;
(Ⅲ)若函數(shù)g(x)=f(x)-2ax+2,x∈[1,2],求函數(shù)g(x)的最大值h(a)的解析式.

分析 (1)根據(jù)奇函數(shù)圖象的對稱性,補全f(x)的圖象,并寫出函數(shù)的單調(diào)減區(qū)間;
(2)利用函數(shù)的奇偶性和已知的x≤0時解析式,求出函數(shù)在x>0時的解析式,得到本題結(jié)論;
(3)通過分類討論研究二次函數(shù)在區(qū)間上的值域,得到本題結(jié)論.

解答 解:(Ⅰ)圖象如圖所示,單調(diào)減區(qū)間是(-∞,-1),(1,+∞);
(2)∵函數(shù)f(x)是定義在R上的奇函數(shù),
∴f(-x)=-f(x).
∵當(dāng)x≤0時,f(x)=x2+2x,
∴當(dāng)x>0時,-x<0,
f(x)=-f(-x)=-[(-x)2+(-x)]=-x2+2x,
∴f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{-{x}^{2}+2x,x>0}\end{array}\right.$.
(3)∵函數(shù)g(x)=f(x)-2ax+2,x∈[1,2],
∴g(x)=-x2+(2-2a)x+2,x∈[1,2],
當(dāng)1-a≤1時,[g(x)]max=g(1)=3-2a;
當(dāng)1<1-a≤2時,[g(x)]max=g(1-a)=a2-2a+3;
當(dāng)1-a>2時,[g(x)]max=g(2)=2-4a.
∴[g(x)]max=$\left\{\begin{array}{l}{3-2a,a≥0}\\{{a}^{2}-2a+3,-1≤a<0}\\{2-4a,a<-1}\end{array}\right.$.

點評 本題考查了函數(shù)的奇偶性、函數(shù)解析式、二次函數(shù)在區(qū)間上的值域,本題難度不大,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}{x-1≤0}\\{x+y≥0}\\{x-y+4≥0}\end{array}\right.$,表示的平面區(qū)域的面積是( 。
A.3B.$\frac{9}{2}$C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.根據(jù)如圖所示的偽代碼,最后輸出的值為205.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.用黑白兩種正六邊形瓷磚按如圖所示規(guī)律拼成若干圖案.
(1)第n個圖案中有白色瓷磚多少塊?
(2)第n-1個圖案中黑色瓷磚和白色瓷磚共有多少塊?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知二次函數(shù)f(x)=x2+bx+c(b,c∈R).
(I)若f(-1)=f(2),且函數(shù)y=f(x)-x的值域為[0,+∞),求函數(shù)f(x)的解析式;
(Ⅱ)若c<0,且函數(shù)f(x)在[-1,1]上有兩個零點,求2b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓柱的底面積為4π,高是底面半徑的3倍,求圓柱的側(cè)面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知A={x|-3≤x≤4},B={m-1≤x≤m+1},B⊆A,則m∈[-2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.黑白兩種顏色的正六邊形地面磚按如圖的規(guī)律拼成若干個圖案:

則第7個圖案中有白色地面磚30塊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知變量x與y正相關(guān),且由觀測數(shù)據(jù)算得樣本的平均數(shù)$\overline{x}$=2.5,$\overline{y}$=3.5,則由觀測的數(shù)據(jù)得線性回歸方程可能為(  )
A.$\stackrel{∧}{y}$=0.4x+2.5B.$\stackrel{∧}{y}$=2x-2.4C.$\stackrel{∧}{y}$=-2x+9.5D.$\stackrel{∧}{y}$=-0.3x+4.4

查看答案和解析>>

同步練習(xí)冊答案