分析 設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),由題意,利用橢圓性質(zhì)求出橢圓的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,由此能求出該橢圓被直線y=x+1截得的弦長.
解答 解:設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
由題意,橢圓的焦點(diǎn)在x軸上,且2a=4,$\frac{{a}^{2}}{c}$=4,
解得a=2,c=1,∴b2=a2-c2=3,
∴橢圓的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,
聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=x+1}\end{array}\right.$,得7x2+8x-8=0,
設(shè)直線y=x+1與橢圓交于A(x1,y1),B(x2,y2),
則x1+x2=-$\frac{8}{7}$,x1x2=-$\frac{8}{7}$,
∴該橢圓被直線y=x+1截得的弦長為:
|AB|=$\sqrt{2[(-\frac{8}{7})^{2}+4×\frac{8}{7}]}$=$\frac{24}{7}$.
故答案為:$\frac{24}{7}$.
點(diǎn)評 本題考查橢圓弦長的求法,是中檔題,解題時要認(rèn)真審題,注意橢圓的簡單性質(zhì)和橢圓弦長公式的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,$\frac{1}{2}$) | B. | [-$\frac{1}{2}$,$\frac{1}{2}$] | C. | [-1,1] | D. | (-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com