1.某校高三年級(jí)共有學(xué)生900人,編號(hào)為1,2,3,…,900,現(xiàn)用系統(tǒng)抽樣的方法抽取一個(gè)容量為45的樣本,則抽取的45人中,編號(hào)落在區(qū)間[481,720]的人數(shù)為( 。
A.10B.11C.12D.13

分析 根據(jù)系統(tǒng)抽樣的定義,求出對(duì)應(yīng)的組距,再計(jì)算編號(hào)落在區(qū)間[481,720]的人數(shù).

解答 解:900人中抽取樣本容量為45的樣本,則樣本組距為:
900÷45=20;
則編號(hào)落在區(qū)間[481,720]的人數(shù)為
(720-481+1)÷20=12.
故選:C.

點(diǎn)評(píng) 本題主要考查系統(tǒng)抽樣的定義,求出組距是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)滿足f(x)+f(2-x)=2,當(dāng)x∈(0,1]時(shí),f(x)=x2,當(dāng)x∈(-1,0]時(shí),$f(x)+2=\frac{2}{{f(\sqrt{x+1})}}$,若定義在(-1,3)上的函數(shù)g(x)=f(x)-t(x+1)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)t的取值范圍是( 。
A.$(0,\frac{1}{2}]$B.$[\frac{1}{2},+∞)$C.$(0,6+2\sqrt{7})$D.$(0,6-2\sqrt{7})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=(x+k+1)$\sqrt{x-k}$,g(x)=$\sqrt{x-k+3}$,其中k是實(shí)數(shù).
(1)若k=0,解不等式$\sqrt{x}$•f(x)≥$\frac{1}{2}$$\sqrt{x+3}$•g(x);
(2)若k≥0,求關(guān)于x的方程f(x)=x•g(x)實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.以下四個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)A,B為兩個(gè)定點(diǎn),k為正常數(shù),|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|=k,則動(dòng)點(diǎn)P的軌跡為橢圓;
②雙曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1與橢圓x2+$\frac{{y}^{2}}{35}$=1有相同的焦點(diǎn);
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④已知以F為焦點(diǎn)的拋物線y2=4x上的兩點(diǎn)A,B滿足$\overrightarrow{AF}$=3$\overrightarrow{FB}$,則弦AB的中點(diǎn)P到準(zhǔn)線的距離為$\frac{8}{3}$.
其中真命題的序號(hào)為③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.命題“$?x>0{,_{\;}}{x^2}+x>1$”的否定是$?{x_0}>0{,_{\;}}{x_0}^2+{x_0}≤1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知多項(xiàng)式3a2b-2a3b2-a2b3-5ab4+2的次數(shù)是x,項(xiàng)數(shù)是y,常數(shù)項(xiàng)z,請(qǐng)求出(x+y)z的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,則z=2x+y的最大值為( 。
A.$\frac{11}{3}$B.5C.$\frac{16}{3}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an},a2=3,a5=9.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)令bn=c${\;}^{{a}_{n}}$,其中c為常數(shù),且c>0,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)數(shù)列(an}的前n項(xiàng)和為Sn,且a1=1,an+an+1=$\frac{1}{{2}^{n}}$(n=1,2,3,…),則S2n+3=$\frac{{4}^{n+2}-1}{3•{4}^{n+1}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案