分析 (1)求得拋物線的焦點(diǎn),代入直線方程,即可得到k的值;
(2)將直線y=x-1代入拋物線的方程,運(yùn)用韋達(dá)定理,結(jié)合拋物線的定義可得|AB|=x1+x2+p,計(jì)算即可得到所求值.
解答 解:(1)∵拋物線y2=4x的焦點(diǎn)為F(1,0),
且直線y=kx-1過(guò)點(diǎn)F(1,0)
∴0=k-1,∴k=1,∴k的值是1;
(2)∵k=1,∴把y=x-1代入y2=4x得,
(x-1)2=4x,即為x2-6x+1=0,
∴x1+x2=6又p=2
∴由拋物線的定義可得|AB|=x1+x2+p=6+2=8.
∴線段AB的長(zhǎng)為8.
點(diǎn)評(píng) 本題考查拋物線的定義、方程和性質(zhì),考查直線和拋物線的方程聯(lián)立,運(yùn)用韋達(dá)定理和拋物線的定義,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=2x | B. | f(x)=3x | C. | $f(x)={(\frac{1}{2})^x}$ | D. | f(x)=lgx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | -2 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com