分析 (1)直接作圖即可;
(2)結(jié)論:四邊形ABCD為平行四邊形;將表達(dá)式$\overrightarrow{OA}$+$\overrightarrow{OC}$=$\overrightarrow{OB}$+$\overrightarrow{OD}$變形,利用向量減法運(yùn)算法則即得結(jié)果.
解答 解:(1)如右圖;
(2)猜想:四邊形ABCD為平行四邊形;
證明如下:
∵$\overrightarrow{OA}$+$\overrightarrow{OC}$=$\overrightarrow{OB}$+$\overrightarrow{OD}$
∴$\overrightarrow{OC}-\overrightarrow{OB}=\overrightarrow{OD}-\overrightarrow{OA}$,
即$\overrightarrow{BC}=\overrightarrow{AD}$,
故四邊形ABCD為平行四邊形.
點(diǎn)評 本題考查向量減法的運(yùn)算法則,對表達(dá)式的靈活變形是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | q>1 | B. | 0<a1<1 | C. | 0<a6a8<1 | D. | T9<T5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{5}$ | B. | $\frac{5}{7}$ | C. | $\frac{7}{12}$ | D. | $\frac{5}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{39}}{3}$ | B. | $\frac{26\sqrt{3}}{3}$ | C. | $\frac{8\sqrt{3}}{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com