20.如圖所示,AB是圓O的直徑,直線MN切圓O于C,CD⊥AB,AM⊥MN,BN⊥MN,則下列結(jié)論中正確的個(gè)數(shù)是( 。 
①∠1=∠2=∠3      
②AM•CN=CM•BN
③CM=CD=CN      
④△ACM∽△ABC∽△CBN.
A.4B.3C.2D.1

分析 對(duì)四個(gè)命題分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:∵AB是圓O的直徑,CD⊥AB,∴∠2=∠3,
∵直線MN切圓O于C,∴∠1=∠2,∴∠1=∠2=∠3,①對(duì);
利用△AMN∽△CNB得$\frac{AM}{CM}=\frac{CN}{BN}$,∴AM•BN=CM•CN,②錯(cuò).
利用△AMN≌△ADC,可得CM=CD,△CDB≌△CNB,可得CD=CN,∴CM=CD=CD,③對(duì);
利用等角的余角相等得到△ACM∽△ABC∽△CBN,④對(duì).
故選:B.

點(diǎn)評(píng) 本題考查圓的切線的性質(zhì),考查三角形相似的判定與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直角梯形ABCD,滿足AB⊥AD,CD⊥AD,AB=2AD=2CD=2現(xiàn)將其沿AC折疊成三棱錐D-ABC,當(dāng)三棱錐D-ABC體積取最大值時(shí)其外接球的體積為( 。
A.$\frac{{\sqrt{3}π}}{2}$B.$\frac{4}{3}π$C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左頂點(diǎn)A作斜率為2的直線,與橢圓的另一個(gè)交點(diǎn)為B,與y軸的交點(diǎn)為C,已知$\overrightarrow{AB}=\frac{6}{13}\overrightarrow{BC}$.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)動(dòng)直線y=kx+m與橢圓有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q,若x軸上存在一定點(diǎn)M(1,0),使得PM⊥QM,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.運(yùn)行如圖所示的流程圖,如果輸入b=2,經(jīng)過四次循環(huán)后輸出的a=9,則輸入正數(shù)a的值可能為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)0<a<1,0<θ<$\frac{π}{4}$,x=(sinθ)${\;}^{lo{g}_{a}sinθ}$,y=(cosθ)${\;}^{lo{g}_{a}tanθ}$,則x,y的大小關(guān)系是x<y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過點(diǎn)A(0,3),被圓(x-1)2+y2=4截得的弦長為2$\sqrt{3}$的直線的方程是(  )
A.y=-$\frac{4}{3}$x+3B.x=0或y=$\frac{4}{3}$x+3C.x=0或y=-$\frac{4}{3}$x+3D.x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知α是第二象限角,且sinα=$\frac{{\sqrt{15}}}{4}$,求$\frac{{sin(α+\frac{π}{4})}}{sin2α+cos2α+1}$的值.
(2)已知sin(π+α)=$\frac{1}{2}$,求$\frac{{sin({2π-α})cos(α+\frac{π}{2})}}{sin(α-π)}-\frac{{sin(α-\frac{3π}{2})}}{{tan({α-π})}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若過拋物線x2=4y的準(zhǔn)線上一動(dòng)點(diǎn)P作此拋物線的兩條切線,切點(diǎn)分別為A(x1,y1)、B(x2,y2);點(diǎn)O為坐標(biāo)原點(diǎn).則以下命題:
(1)直線AB過定點(diǎn);
(2)∠AOB為鈍角;
(3)∠APB可取60°;
(4)若△ABP的面積為$\frac{125}{16}$,則點(diǎn)P坐標(biāo)為($\frac{3}{2}$,-1)或(-$\frac{3}{2}$,-1).
其中正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.化簡:$\sqrt{-{a}^{3}^{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案